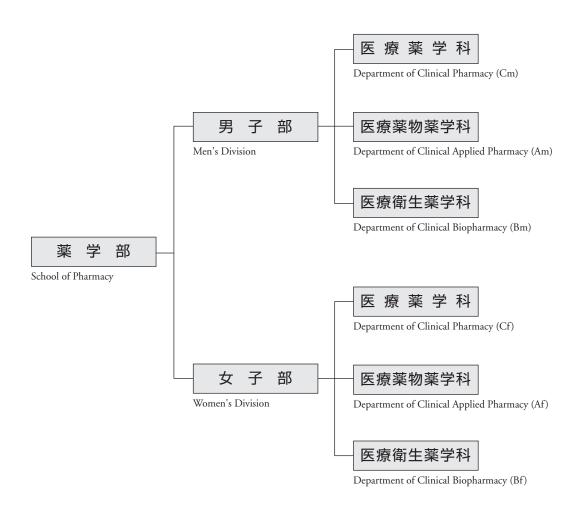

2011年度 (平成23年度) 1·2·3·4·5·6年次生用 1 三


since 1880

東京薬科大学薬学部

薬学部 編成図

東京薬科大学

Tokyo University of Pharmacy and Life Sciences

2011年度(平成23年度) 1·2·3·4·5·6年次生用

授業計画

履修要項 授業計画

since 1880

東京薬科大学薬学部

総目次

履修要項	11	
東京薬科大学沿革略	••••	10
各学科の目標(特徴)	••••	9
薬学部の教育研究理念	••••	8
2011年度 (平成23年度) 授業日予定表	••••	7
2011年度 (平成23年度) 学年暦	••••	6

I 1年次必修科目

●総合科目	
[一般総合科目]	
数 学	40
情報リテラシー I	42
情報リテラシー演習・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	44
薬学入門	46
薬学入門演習 I	48
薬学入門演習Ⅱ	50
[外国語科目]	
英語 (講読)	52
英語 (コミュニケーション)	53
英品 (コミュニケーフョン)	55
●共通専門科目	
[物理系薬学]	
物理学·····	54
化学結合論	56
化学平衡論	58
分子物理化学	60
分析化学	62
無機化学	64
[化学系薬学]	
有機化学Ⅰ	66
有機化学演習 I	68
有機化学Ⅱ⋯⋯⋯⋯⋯⋯⋯	70
有機化学演習Ⅱ	72
[生物系薬学]	
細胞生物学······	74
機能形態学 I	76
生物学······	78
機能形態学Ⅱ	80
生化学 I ······	82
生化学演習·······	84
微生物学 I ······	86
[薬と疾病]	
医療倫理	88

2年次必修科目 Ⅲ 3年次必修科目 ●総合科目 ●総合科目 [外国語科目] [外国語科目] 実用薬学英語……………………… 146 ●共诵専門科目 ●共通専門科目 [物理系薬学] [化学系薬学] 物理的平衡論……………… 93 医薬品化学 [………………… 148 天然医薬品化学…………………………… 149 医薬品化学 Ⅱ …………………… 151 熱力学・反応速度論…………… 99 [牛物系薬学] 放射化学…………………… 101 病原微生物学………………… 152 [化学系薬学] 臨床免疫学……………………… 154 有機化学Ⅲ………………………………………102 バイオ医薬品とゲノム情報………… 156 機器スペクトル演習…………… 104 「健康と環境] 植物薬品学………………………… 106 生活環境と健康……………… 158 有機化学Ⅳ …… 108 栄養素の化学………………… 160 生物有機化学………………… 110 化学物質と生体影響……………… 161 漢方薬物学…………………… 112 食品と健康……………………………………… 163 [生物系薬学] [医薬品をつくる] 機能形態学Ⅲ………………………… 114 製剤工学…… 164 生化学Ⅱ………………………………………………116 応用薬剤学…………………… 166 特許・レギュラトリアルサイエンス……… 168 生理活性物質概論……………… 120 [薬と疾病] 生化学Ⅲ………………………………………… 122 薬の効き方Ⅱ………………………… 170 免疫学……………………… 124 疾病と薬物治療Ⅲ…………… 172 [健康と環境] 疾病と薬物治療IV ····· 174 健康保持と疾病予防……………… 126 疾病と薬物治療V…………… 176 [医薬品をつくる] 薬の効き方Ⅲ…………………… 178 生物薬剤学……………………… 128 疾病と薬物治療VI……………… 180 応用統計学…… 130 テーラーメイド医療……………… 182 疾病と薬物治療Ⅷ………184 疾病と薬物治療VII(医療情報演習)…… 186 [薬と疾病] 一般用医薬品学…………………………… 188 薬の効き方 [………………… 136 [社会と薬学] 疾病と薬物治療 I ······ 139 薬学と社会………………… 190 疾病と薬物治療 Ⅱ …………………… 141 薬事関連法規と制度 I ······ 192

総目次

▼ 4年次必修科目	総合衛生演習····································
科別専門科目	●総合法規演習
[学科共通科目]	
薬事関連法規と制度 II ······ 196	
薬局方総論・・・・・・198	V 5年次必修科目
健康と環境 I 200	
健康と環境Ⅱ・・・・・・・・・・・・・・・・202	●総合科目
薬の効き方IV(薬物治療演習)204	アドバンス英語 244
疾病と薬物治療VII	
[科別特論・演習]	
● 医療薬学特論- i	VI 5・6年次必修科目
臨床で活躍する薬剤師を目指して 208	
●医療薬学特論- ii	●科別専門科目
医薬品開発と臨床試験209	[科別特論・演習]
●医療薬学特論-iii	医療薬学演習Ⅱ-i ラボラトリー演習(1) ··· 246
中医方剤学	医療薬学演習 II-ii ラボラトリー演習 (2) ··· 247
●医療薬学演習 I - i	医療薬物薬学演習Ⅱ-iラボラトリー演習 … 248
臨床で活躍する薬剤師を目指して(I) 211	医療薬物薬学演習Ⅱ-ii学術論文演習 249
●医療薬学演習 I - ii	医療衛生薬学演習II-iラボラトリー演習(1) … 250
臨床で活躍する薬剤師を目指して(Ⅱ) 213	医療衛生薬学演習Ⅱ-ii ラボラトリー演習(2) … 251
●医療薬学演習 I - iii	
医薬品開発と臨床試験 214	加入在为沙皮利日
●医療薬物薬学特論- i	Ⅷ 6年次必修科目
創薬概論 216	●我则春眼我 □
●医療薬物薬学特論-ii	●科別専門科目
データ解析集中講座 218	[アドバンス演習]
●医療薬物薬学特論 - iii	アドバンス法規演習 254
中医方剤学 220	アドバンス化学演習 256
●医療薬物薬学演習 I - i	アドバンス物理演習 256
医薬品創製と基礎(物理・化学系) 221	アドバンス生物演習 257
●医療薬物薬学演習 I - ii	アドバンス健康・環境演習······ 257
医薬品創製と基礎(生物系・医療薬学系)…223	アドバンス創薬演習258 スドバンス 意 - 佐藤津羽 - 258
●医療薬物薬学演習 I - iii	アドバンス薬・疾病演習 258
創薬演習······ 225	[科別特論・演習]
● 医療衛生薬学特論- i	医療薬学演習Ⅱ-Ⅲ259
高齢者医療 227	医療薬物薬学演習Ⅱ-ⅲ ・・・・・・・・・・・・260
●医療衛生薬学特論-ii	医療衛生薬学演習Ⅱ-ⅲ 261
先端香粧品科学 228	
●医療衛生薬学特論-iii	
医療衛生薬学小論文 229	VⅢ 1·2年次選択科目(総合科目)
●医療衛生薬学演習 I - i	●総合科目
セルフメディケーション:薬剤師の関わり… 230	[一般総合科目]
●医療衛生薬学演習 I - ii	
臨床応用薬学への課題研究チュートリアル… 232	健康科学
● 医療衛生薬学演習 I - iii	地球環境概論 266
薬剤師の職能と自己将来展望 234	芸能・文化 268
●科別英語特論······ 236	哲 学269
[総合演習]	現代経済論 270
●総合化学演習 237	国際関係論271
●総合生物演習	美術・イラストレーション 272
●総合創薬演習 239	文章表現 273
●総合物理演習 240	コミュニケーション論 275

法 学 277	マーケティング [(医薬品マーケティング [)… 326
情報リテラシーⅡ 279	マーケティングⅡ(医薬品マーケティングⅡ)… 328
健康スポーツ 281	マーケティングⅢ
	(医薬品マーケティング戦略) 330
[外国語科目]	マーケティングⅣ 332
英語検定 I282	医療経済学特論 334
英語検定Ⅱ・・・・・・・・・・・・・・・・・・ 283	病原微生物学特論(感染制御学特論)335
英会話[医薬品生産特論 336
英会話[多变量解析 · · · · · · · 337
英会話[治験の実際(創薬育薬分野における薬剤師) … 339
英 会 話 I (科学英語コミュニケーション) ······ 286 英 会 話 II ······ 288	病態生理学特論340
英会話Ⅱ288	医薬品開発特論 I (構造有機化学特論) · · · · · · · 342
英会話Ⅱ289	医薬品開発特論Ⅱ(有機合成化学特論)・・・・・・・344
英 会 話 II (科学英語コミュニケーション) ······ 290	
ドイツ語 I ······ 292	臨床薬理学特論
ドイツ語Ⅱ293	後期選択専門科目Ⅱ348
中国語I294	
中国語Ⅱ 295	V +991V C
フランス語 I 296	XI 実習科目
フランス語Ⅱ 298	●共通実習科目
●車町扒口	
●専門科目	●生物系実習 I
[ゼミナール]	基礎生物学実習······ 351 ●化学系実習 I
ゼミナール・・・・・・・・・・・300	基礎有機化学実習······ 352
●自由科目	●物理系実習 I
	分析化学実習
基礎物理学集中講義 302	化学系実習Ⅱ 有機化学実習 356
	●化学系実習Ⅱ 漢方薬物学実習358
X 3年次選択科目(専門科目)	●物理系実習Ⅱ 物理化学・分析化学実習… 360
	●生物系実習Ⅱ 微生物・免疫学実習 362
●専門科目	●化学系実習Ⅲ 天然医薬品化学実習 364
[専門科目 I]	●化学系実習Ⅲ 医薬品合成実習 366
病理組織学······ 304	●生物系実習Ⅲ 生化学実習 368
薬局管理学305	●医療系実習 I
反応有機化学 307	病態生理学・薬物安全性学実習 370
構造有機化学 308	創薬実習 薬剤学実習 372
細胞工学 309	●科別実習
東洋医学概論 311	●医療系実習Ⅱ
臨床医学概論 312	●
医薬品開発	●健康・環境実習
薬剤経済学	衛生化学・公衆衛生学実習 376
香粧品科学 316	●化学系実習IV
●自由科目	化学系実習Ⅳ 378
インターンシップ 317	●生物系実習IV
	生物系実習Ⅳ
	●事前実務実習
X 6年次選択科目(専門科目)	事前実務実習 379
	●実務実習 384
バイオスタティスティクス【	●課題研究
(緩和医療の最前線) 320	
バイオスタティスティクスⅡ(生物統計学Ⅱ)… 322	
バイオスタティスティクスⅢ(生物統計学Ⅲ)… 324	五十音順索引 389

2011年度(平成23年度)学年暦

教 發	実務実習	期間
第1ター	L	4月6日(水)~ 5月14日(土)
第2ター	ム 第Ⅰ期	5月16日(月)~ 7月29日(金)
第3ター	ム 第Ⅱ期	9月5日(月)~11月18日(金)
第4ター	L	11月21日(月)~12月22日(木)
第5ター	ム 第Ⅲ期	1月10日(火)~ 3月26日(月)

	後期
9月 16日(金) (8月31日(水)) 16日(金)	後期授業開始選択科目履修申請(1~3年)
10月 8日(土) 13日(木) 17日(月) 27日(木) 28日(金) 11月1日(火)	体育祭 1~3年 前期追再試験成績配付 -4年 追再試験期間 -東薬祭(準備日、後片付け含む) (休講)
11月 6日(日) 16日(水) 24日(木)	創立記念日 学生大会(午後休講) 4年 成績配付
12月 2日(金) 3日(土) 17日(土) 18日(日) 22日(木)	一4年 共用試験(CBT)(予定) 一4年 共用試験(OSCE)(予定) 後期年內授業終了
12月25日(日) 平成24年1月9日(月)	
平成24年 10日(火) 1月 23日(月) 24日(火) 25日(水) 	後期授業再開 後期授業終了 後期授業予備日 - 1~3年 後期試験 (予備日:2月4日(土)、9日(木))
2月 20日(月) 23日(木) 27日(月) 27日(月) 3月7日(月)	共用試験(OSCE)追再試験(予定) 1~3年 後期試験成績配付・ 後期追再試験受験シール販売 共用試験(CBT)追再試験(予定) - 1~3年 後期科目・追再試験 (予備日:3月3日(土)、8日(火))
3月 16日(水) 26日(月)	進級発表(1~5年)·成績配付

2011年度(平成23年度)授業日予定表

前期:4/1-9/15 後期:9/16-3/31

授業日

午前授業

試験日 試験予備日

4月						
日	月	火	水	木	金	土
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30

	5月						
日	月	火	水	木	金	土	
1	2	3	4	5	6	7	
8	9	10	11	12	13	14	
15	16	17	18	19	20	21	
22	23	24	25	26	27	28	
29	30	31					

	6月						
日	月	火	水	木	金	土	
			1	2	3	4	
5	6	7	8	9	10	11	
12	13	14	15	16	17	18	
19	20	21	22	23	24	25	
26	27	28	29	30			

注1)	早期体験実習のため、
1	年次科目については休講とする

	7月							
日	月	火	水	木	金	土		
					1	2		
3	4	5	6	7	8	9		
10	11		13		15	16		
17	18	19*	20	21	22	23		
24/31	25	26	27	28	29	30		

	8月						
日	月	火	水	木	金	土	
	1	2	3	4	5	6	
7	8	9	10	11	12	13	
14	15	16	17	18	19	20	
21		23	24	25	26	27	
28	29	30	31				

9月									
日	月	月火水木金							
				1	2	3			
4	5 6		7	8	9	10			
11	12	13	14	15	16	17			
18	19	20	21	22	23	24			
25	26	27	28	29	30				

	10月									
日	月	月 火 水 木 金 :								
						1				
2	3 4	4	5	6	7	8				
9	10	11	12	13	14	15				
16	17	18	19	20	21	22				
23	24	25	26	27	28	29				
30	31									

11月									
П	月	火	水	木	金	土			
		1	2	3	4	5			
6	7 8		9	10	11	12			
13	14	15	16	17	18	19			
20	21	22	23	24	25	26			
27	28	29	30						

12月										
日	月	火	水	木	金	土				
				1	2	3				
4	5	6	7	8	9	10				
11	12	13	14	15	16	17				
18	19	20	21	22	23	24				
25	26	27	28	29	30	31				

	1月										
日	月	月火水木金									
1	2	3	4	5	6	7					
8	9	10	11	12	13	14					
15	16			19	19 20						
22	23	24*	25	26	27	28					
29	30	31									

	2月										
日	月	火	水	木	金	土					
			1	2	3	4					
5	6 7		8	9	10	11					
12	13	14	15	16	17	18					
19	20	21	22	23	24	25					
26	27	28	29								

	3月										
日	月	火	木	金	±						
				1	2	3					
4	5	6	7	8	9	10					
11	12	13	14	15	16 17						
18	19	20	21	22	23	24					
25	26	27	28	29	30	31					

曜日別授業コマ数

		,,,,,			
	月	火	水	木	金
前期	14	13	14(午前)	*** 14 (13)	*** 14 (13)
後期	13	15	15(午前)	15	14
通年 (合計)	27	28	29(午前)	29	28

- *7月19日(火)は授業予備日とする。
- **1月24日(火)は授業予備日とする。
- ***前期木曜日(13) コマ、金曜日(13) コマは早 期体験実習のため、1年次科目は1コマ分休講とする。 (上記予定表 注1)を参照)

※上記は変更する場合もある

薬学部の教育研究理念

薬学は化学、生物学、物理学を基礎とする自然科学であり、さらに医学などと連携する多くの分野を総合した学問である。その成果は疾病の治療・予防新薬の開発のみならず、食品や化粧品などに使用される化学物質の適正な使用、さらに生活環境や地球環境の保全、改善にも役立っている。1986年および1992年に医療法の改正が行なわれ、我が国の薬剤師が初めて医師や看護師と同様に「医療の担い手」として位置づけられた。従来物質(化合物)を中心に医療に関わる学問体系として発展してきた日本の薬学も、今日では医療現場での医療技術の高度化、医薬分業の進展、さらには国民の医療に対する期待等から、「患者志向」の薬学へと大きく変遷している。

薬科大学・薬学部は薬剤師を養成できる唯一の教育機関である。高い資質を持つ薬剤師、すなわちこれまでの基礎的な薬学に医療薬学が融合した総合科学としての薬学を学んだ薬剤師が必要になってくる。それにはこれまで以上に薬科大学・薬学部での教育の中で、医療薬学の充実、医療現場での実務実習期間の延長、さらには医療倫理教育の充実が叫ばれ、ついに2006年度から6年一貫教育が採用された。

本学は1880年に藤田正方によって創立された東京薬舗学校を起源としている。本学の建学精神である「Flore Pharmacia!」(花咲け薬学)は、どの時代においても「薬学の学問を通じて人類福祉への貢献をしよう!」との先人達の真摯な"精神"を表したものである。すなわち、本学薬学部は人類の福祉への貢献を目指し、ヒューマニズムに溢れた教育研究を行う事を目標にしている。

本学薬学部における教育理念は、医療と健康に関する分野で自らの使命を強く自覚し、そのリーダーとして積極的に活躍し、社会に貢献できる人材を育てることである。さらに薬学専門領域に精通すると共に、医療の担い手としての科学性と倫理性をバランスよく身につけた薬の専門家を育成することも重要である。本学薬学部学生は卒業後においても、常に社会のニーズを的確に理解し、科学的根拠に基づいて問題点を解決でき、生涯にわたって自己研鑽を続ける事ができる能力を身につけなければならない。

本学薬学部は既に2004年度から新しい3学科を導入し、どの学科からも薬剤師免許が取得できることを基本に、6年制教育を先取りしたカリキュラムをスタートしている。6年制ではこれらのカリキュラムに加えて、5~6年次には約5ヶ月間の実務実習を行い、残りの1年半には卒業研究を行ないながら、各学科に特徴的な講義や演習を受講する事になる。6年制になっても、本学から研究活動が消えてしまう事は無く、これまでと同様に、研究志向をもった学生諸君のために、十分な研究環境を整備している。

医療現場への高い資質を持つ薬剤師の供給は必須であり、さらに医療現場と教育・研究機関との強い連携が、将来の薬の創製(創薬)研究者、基礎研究者の育成にとって必要となっている現状で、今後も研究志向を持った薬剤師の輩出は、本学薬学部の使命の一つと考えている。6年制教育の中で、臨床の現場を学び、高度医療に通じる知識・技能・態度を学んだ薬剤師が、医療現場や創薬の場に進出していく事こそ、社会において活躍できる人材養成を目指した本学の建学の精神に合致するものである。

上記の教育研究理念を実現するために、2006年度よりこれまでの3学科体制を維持しつつ、その学科名は「医療薬学科」、「医療薬物薬学科」、「医療衛生薬学科」と変更された。各学科の特徴は次ページの通りである。

各学科の目標(特徴)

■ 医療薬学科

わが国では医療法の改正に伴い、薬剤師は医療の担い手として位置づけられた。このため、病棟活動の充実など、医療従事者として高度な薬剤師職能教育の充実が求められている。このような社会のニーズに応えるために、本学科は薬学に必要な基礎教育の上に、医療現場で必要となる十分な知識と技能、および患者や医療チームメンバーに対する適切な態度を身につけた薬剤師および研究者を育成する。

■ 医療薬物薬学科

薬の創製を取り巻く科学と技術の進展、およびこの分野を中心とする社会のニーズを的確に 捉えて、疾患の予防、診断、治療のために有用な薬の創薬研究に挑戦できる薬剤師の養成を教 育目標とする。そのために、本学科は薬学基礎および専門教育に加えて、薬の創製に関連する 専門領域の教育と研究活動によって十分な知識・技能・態度を身につけた薬剤師および研究者 を育成する。

■ 医療衛生薬学科

高齢化社会の到来と慢性・難治性疾患の増加に伴い、薬物治療はもとより疾病の予防へ積極的に貢献できる薬剤師が社会より強く求められている。このような社会のニーズに応えるために、本学科では薬剤師の基礎および専門教育はもとより、健康・環境科学、老年期医療、再生医療、予防医療などに関して卓越した知識・技能・態度を身につけた薬剤師および研究者を育成する。

東京薬科大学沿革略

明治 13	(1880)	旧丸岡藩医、文部省属・藤田正方は薬学教育を企画、東京市本所区亀沢町に 東京薬舗学校を創立(11月)
16	(1883)	東京薬学校と改称、神田岩本町に移転(7月)
19	(1886)	薬剤師小林九一ら薬学講習所を神田美土代町に開設(夏)
21	(1888)	上記二施設を合併、私立薬学校を創設、医科大学教授下山順一郎 校長に就任 (11月6日、本学創立記念日)
22	(1889)	下谷区西町に校舎移転(9月)
30	(1897)	上野桜木町旧寛永寺境内に校舎新築移転(11月)
33	(1900)	私立東京薬学校と改称(7月)
大正 6	(1917)	専門学校令に基づく東京薬学専門学校を設立(3月)
昭和 3	(1928)	校舎を豊多摩郡淀橋町柏木に新築移転(11月)
4	(1929)	桜木町旧校舎に上野女子薬学校を設立(1月)
6	(1931)	上野女子薬学校を東京薬学専門学校女子部と改称(2月)
24	(1949)	東京薬学専門学校と同女子部を合わせ、東京薬科大学として発足(2月)
38	(1963)	大学院薬学研究科薬学専攻(修士課程)設置(3月)
39	(1964)	製薬学科設置(1月)
40	(1965)	衛生薬学科設置(1月)、大学院薬学研究科薬学専攻(博士課程)設置(3月)
51	(1976)	八王子キャンパスへ男子部、女子部とも全学移転(4月) 専攻科(医療薬学専攻)設置(3月)
55	(1980)	創立100周年記念式典挙行
56	(1981)	大学院薬学研究科医療薬学専攻(修士課程)設置(3月)
62	(1987)	中国中医研究院と学術交流に関する協定調印(8月)
平成 1	(1989)	南カリフォルニア大学と学術交流に関する協定調印(10月)
4	(1992)	東京医科大学と姉妹校締結調印(7月)
5	(1993)	生命科学部(分子生命科学科、環境生命科学科)設置(12月)
7	(1995)	カリフォルニア大学サンフランシスコ校と学術交流開始(大学院研究科)(9月)
0	(1007)	ドラッグ・ラショナル研究開発センター設置(5月)
9	(1997)	大学院生命科学研究科生命科学専攻(修士課程)設置(12月)
11	(1999)	大学院生命科学研究科生命科学専攻(博士課程)設置(12月)
15	(2002)	薬学部医療薬学科、創薬学科、生命薬学科設置(5月)
10	(2003)	薬学部薬学科、衛生薬学科、製薬学科の学生募集停止(11月)
16	(2004)	杏林大学と姉妹校締結調印(7月)
17	(2005)	薬学部医療薬学科(6年制)、医療薬物薬学科、医療衛生薬学科設置(4月)
10	(2006)	薬学部医療薬学科(4年制)、創薬学科、生命薬学科の学生募集停止(2月)
18	(2006)	薬学部6年制開始(4月)
19	(2007)	生命科学部、環境生命科学科を環境ゲノム学科へ名称変更(4月)
00	(2000)	生命科学部、2学科2コース制を導入(4月)
20	(2008)	教育5号館竣工(9月)
00	(007.0)	学生会館竣工(3月)
22	(2010)	創立130周年式典挙行
23	(2011)	研究4号館竣工(3月)
		•

履修要項

履修要項

1 教育制度

本学部における教育制度は、完全な単位制でなく、学年制を加味した単位制である。すなわち、1年間に修得した単位数が一定の基準に達しない場合は、つぎの年次(学年)に進むことができない。

2 教育課程

本学部の教育課程は必修科目、選択科目、自由科目の3つの柱から成り立っている。「必修科目」には総合科目、共通専門科目、共通実習科目、学科別専門科目が設置されている。「選択科目」には総合科目、専門科目、自由科目が置かれ、総合科目・専門科目についてはそのなかから決められた科目数・単位数以上を選択履修する必要がある。自由科目は卒業に必要な単位数には含まれないが、薬学を学ぶ上で必要な基礎知識や社会に対応し得る能力を育成することを目的としている。

以上3つの柱は、薬学の学問を教授するとともに、幅広く深い教養及び総合的な判断力を培い、 豊かな人間性を育てることに配慮したものである。

3 単位の基準

本学部においては原則として、講義および演習の1コマを70分とし、週1コマ半期(前期・後期)の講義を1単位、週1コマ通年の講義を2単位とする。

実習・実技は、30時間をもって1単位とする。

4 卒業に必要な単位数

学則第54条に定められているように卒業に必要な総単位数は、各学科とも186単位以上である。 この内容を授業科目別に示したものが、次表「年次別・学科別授業科目単位配分表」である。

5 卒業の認定

卒業の認定を受けるためには、次表の授業科目から次のように186単位以上を修得しなければならない。

	総合科目専門科目		学科別専門科目	合 計		
必修科目	16単位	83単位	67単位	166単位		
選択科目	6単位以上	5単位以上	9単位	20単位以上		
合 計	22単位以上	88単位以上	76単位	186単位以上		

年次別・学科別授業科目単位配分表

(必修科目)

	修科			711			学年	次	・単位	立数	
区	分	授	業	科	目			_		5年	
総合	一般総合科目	数情報 情報 関 業学 入 入 入	テラ: 門 門演	シー) 習 [2 1 1 1 1					
科目	外国語科目	英語(英語(薬学英 実用薬 アドバ	コミュ: 語 学英:	ニケ- 語	-ション)	2 2	2	2		1	
#	物理系薬学	物化化分分無物機臨熱放 舞響結平物化化的分分無物機臨熱放射	合衡理学学平析析:学論論化: 一次	論	变 論	1 1 1 1 1 1 1	1 1 1 1 1 1				
共 通 専 門	化学系薬学	有有有有有機 植有生漢医天医機機機器物機物方薬然薬化化化化工薬化有薬品医品	学学学ペ品学機物化薬演Ⅱ演Ⅲク学Ⅳ化学学品	習Ⅱ 〜ル¾ 学 I 化学		1 1 1 1	1 1 1 1 1	1 1 1			
科目	生物系薬学	細機生機生生微機生微生生免病臨バ胞能物能化化生能化生理化疫原床不足形学形学学物形学物活学学微免证	態 態 Ⅰ 演学態 Ⅱ 学性 Ⅲ 生疫学 学 習 Ⅰ 学 Ⅲ 物学	■■質概	論	1 1 1 1 1 1 1	1 1 1 1 1	1 1 1			

- IV	分	授	**	科	В		学年	次	・単位	立数	
<u> </u>	<i>ח</i>	按	耒	什	<u> </u>	1年	2年	3年	4年	5年	6年
	健康と環境	健康保 生活素 化食品	- 境と の化 質と	健康 学 生体!			1	1 1 1			
共	医薬品をつくる	生物薬 物理系統 物理系統 製 心用薬 物理系統 特許・レキ	 計学 剤学 学 剤学		ナイエンス		1 1 1	1 1 1			
通専門科目	薬と疾病	医医薬疾疾医薬疾疾疾薬疾テ疾療療の病病療の病病病病病病病病病的病一病	理き薬薬報き薬薬薬き薬一薬 方物物 方物物物方物メ物	治治 Ⅱ治治治Ⅲ治イ治療療 療療療 療療療	II IV V VI 氢療	1	1 1 1 1 1	1 1 1 1 1 1 1 1			
	社薬 会学	一般用 薬学と 薬事関	社会		制度Ⅰ			1 1 1			
近写	· 美量美国学目	生化物化物生化生医創系系系系系系系系系系系系系系系统系统系统系统系统系统系统系统系统系统系统系统	実 実 実 実 実 実 実 実 実 実 実 実 実 実 実 実 実 実 実	I I I I		1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5			

(必修科目)

	修科		+m -m-	IN	_	学年次・単位数					
<u>×</u>	分		授 業	枓	目	1年			4年		
		科別特論·演習	医療薬 医療薬 医療薬 医療薬	学演	習 I 語特論			← :	3 → 3 1	← (3 →
		社薬 会学	薬事関連	基法規	 と制度Ⅱ				1		
		化薬 学学 系	薬局方	総論					1		
		健環境	健康と						1		
		薬と疾病	薬の効疾病と						1 1		
学	医療薬学科	総合演習	総合化:総合生総合創業総合衛業総合法	物演演理演译生演	習 習 習 習 写 所演習				0.5 0.5 0.5 0.5 0.5 0.5 0.5		
子科別		アドバンス演習	アドバンアドバンアドバンアドバンア	ノス物 ノス生 (健康・ ノス創	理演習 物演習 環境演習						0.5 0.5 0.5 0.5 0.5
専			アドバン アドバン 医療系	ノス法	規演習				1.5		0.5
門科		科別実習	健康·玩化学系 生物系 事前実 課題研	実習! 実習! 務実? 習	V V				1.5 1.5 1.5 4	20	
目		科別特論・演習	医療薬 医療薬物 医療薬物	物薬物薬	学演習I 英語特論			← ;	3 → 3 3 1		3 →
		社薬 会学	薬事関連	赴法規	と制度Ⅱ				1		
	医療	化薬 学系	薬局方	総論					1		
	薬物	健環境	健康と						1 1		
	薬学	薬と疾病	薬の効疾病と						1 1		
	科	総合演習	総合化:総合生総合創業総合衛業総合法	物演漢理演習生演習	· · · · · · · · · · · · · · · · · · ·				0.5 0.5 0.5 0.5 0.5 0.5		

হ	区分		授	業	養科目			学年次・単位数				
	נל		汉	未	14	Н	1年	2年	3年	4年	5年	6年
	医療薬物	アドバンス演習	ア ア アト アト	ドバン ドバン バンス ドバン ドバン	ノス生 健康・	之学演習 理演習 環境演習 環境演習 疾病演習 疾病演習						0.5 0.5 0.5 0.5 0.5 0.5
	物薬 学 科	科別実習	健化生事実	療 東 学 物 前 務 題 系 系 系 実 展 研	環境等 実習! 実習! 実習! 務実?	実習 IV IV				1.5 1.5 1.5 1.5 4	20 - 14	
学		科別特論·演習	医療	療薬物 療薬物	勿薬 ? 薬学	学特論 学演習Ⅰ 英語特論 学演習Ⅱ			← 3	3 → 3 1	← ;	3 →
科		社薬会学	薬	事関連	法規	と制度Ⅱ				1		
別		化薬学系	薬	局方約	総論					1		
専		健 _{環境} と	健健	康とり						1 1		
門		薬と疾病		の効 病と		Ⅳ 治療Ⅷ				1		
科目	医療衛生薬学	総合演習	総総総総総	合合合合合合合合合合合合合合合合合合合合合的基本	物演を選挙を選挙を	習習習習				0.5 0.5 0.5 0.5 0.5 0.5		
	科	アドバンス演習	ア アト アト アト	ドバン ドバン バンス ドバン ドバン	ノス物シス生 健康・	之学演習 理演演習 環境演習 環境演習 興業病演習 疾病演習						0.5 0.5 0.5 0.5 0.5 0.5
		科別実習	健化生事実	療 東 学 物 前 務 題	環境等 実習! 実習! 終実習	実習 IV IV				1.5 1.5 1.5 1.5 4	20 - 14	

(選択科目)

選択			学年	次	· 単·	位数	
区分	授業科目 	1年	2年				
一般総合科目	国際関係論美術・イラストレーション文章表現コミュニケーション論法学	+ + + + +	$ \begin{array}{ccc} 1 & \rightarrow \\ 1 & $				1 1
中 科 —	情報リテラシーⅡ 健康スポーツ 英語検定Ⅰ	←	$ \begin{array}{c} 1 \longrightarrow \\ 1 \longrightarrow \\ \hline 1 \longrightarrow \end{array} $				
月 外国語科目	英会話II ドイツ語I ドイツ語II 中国語II 中国語II フランス語I フランス語II	↓ ↓ ↓ ↓ ↓ ↓	$ \begin{array}{ccc} 1 & \rightarrow \\ 1 & $				<u>i</u> 1 1
ゼミナール	生物系ゼミナール 健康・環境ゼミナール 薬・疾病ゼミナール	+ + + + + + + + + +	- 1 - - 1 - - 1 - - 1 - - 1 -	→ → → →			<u>i</u> 1 1
専門科目I	構造有機化学(B) 細胞工学(C) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			1 1 1 1 1 1 1 1			1
科目専門科目Ⅱ	バイオスタティスティクス マーケティング 医療経済学特論 病原微生物学特論						

区分	授 業 科 目	学年次・単位数
应 刀	女 未 付 日	1年 2年 3年 4年 5年 6年
自	基礎生物学集中講義	0.5
自由科目	基礎物理学集中講義	0.5
目	インターンシップ	

◆選択科目の必要単位数について (選択科目 必要単位数一覧)

科目	必要単位数	修得学年
一般総合科目	4 単位以上	1・2年
外国語科目	2 単位以上	1 · 2 年
ゼミナール	5 単位以上	1.2.3年
専門科目I	4 単位以上	3年
専門科目Ⅱ	5 単位以上	5 · 6 年
計	20単位以上	
自由科目	*卒業に必要な単位に含まれず	

※上記単位数は卒業までに修得が必要な単位数である。

【備考】

- ①それぞれの科目の必要単位数を満たした上で総計20単位 以上を修得すること。
 - ※それぞれの科目については、上記修得学年に履修する こと。

ただし、専門科目 II を除く科目については、4年次修 了判定までに修得しなければならない。

- ②専門科目 I の (A) (B) (C) 科目の履修方法について 4年進級時に
 - · 医療薬学科を希望するものは(A)科目、
 - ・医療薬物薬学科を希望するものは(B)科目、
 - ・医療衛生薬学科を希望するものは(C) 科目 を履修することが望ましい。
- ③専門科目Ⅱの(A)(B)(C)科目の履修方法について
 - ・医療薬学科に所属するものは(A)科目、
 - ・医療薬物薬学科に所属するものは(B)科目、
 - ・医療衛生薬学科に所属するものは(C)科目 を履修すること。
- ④自由科目は卒業に必要な単位数に含まれない。
 - *基礎生物学集中講義については平成23年度は開講せず。

6 履修申請

履修にあたっては、卒業に必要な単位数を考慮して方針を立てること。

選択科目については、期日までに「キャンパスライフ支援システム」(Web)上または申請用紙等、大学の指定された方法に従い履修申請をすること。

なお、一度受け付けた申請内容は変更できないので、申請する際は慎重に科目を選び、正確に 手続きを行うこと。また、申請を行わなかったり、申請に誤りがあった場合は、たとえ授業に出 席し、その科目の試験を受験しても単位は認定されない。

〔履修申請について〕

項目	申請の要・不要	注 意
必修科目 (再履修科目を含む)	不要	
選択科目	要	受け付けられた申請は変更を認めない。 履修を放棄すると、原則として次年度以降その科目は履修できない。

〔申請の時期〕

	項目	締切時期
前期到日	1年次生	平成23年 4月8日(金) 16:40まで
前期科目	2・3・6年次生	平成23年 4月7日(木) 16:40まで
後期科目		平成23年 9月16日(金) 16:40まで

期限を過ぎると申請は受け付けられない。

※その他、ゼミナール、実務実習等については別に申請期間を設ける。詳細は追って指示する。

7 単位修得の認定

履修した授業科目については、定期に試験を行い学業成績を考査する。合格した授業科目については、所定の単位の修得を認める。

単位認定(卒業認定も含む)に関する試験は下表に示すものである。各試験ともその年度内に受験しなければならない。

〈試 験〉

(120 1977)				
区 分	内容	受 験 資 格		
定期試験 (前期・後期)	各期末に行う。	授業科目ごとに、授業実施時間数の3分の2 以上の出席が必要。(学則第55条) 注1)		
追試験	定期試験を止むを得ない理由で欠席した 者に行う。 注5)、注6)	欠席の理由が正当と認められた者。 注 2)		
再試験	定期試験を受験した結果、不合格となった者に行う。 注5)、注6)	①当該科目担当教員の判断により受験を認められた者。 ②①の条件を満たし、不合格となった科目が当該学期に修得しなければならない必修科目数の3分の2未満の者。 注3)、注4)		
その他の試験	レポートによる試験 実習試験 注5) (中間試験等)	定期試験に同じ。		
総合演習試験	全ての試験終了後、出席状況および到達 度を判断して評価する。			
卒業認定試験	詳細については、決定次第発表する。	卒業に必要な186単位のうち科別演習Ⅱ(3単位)を除く全ての単位を修得している者。		

※その他、共用試験(CBT、OSCE)を4年次後期に実施する。

- 注1) **受験停止**:授業科目ごとに授業実施時間数の3分の2以上出席しなかった者には定期試験の受験資格を与えない。したがって、追試験・再試験の受験資格も失う。受験資格の得られなかった者については試験開始日前までに科目別に掲示する。
- 注2) **試験欠席届**: 定期試験を疾病その他止むを得ない理由で欠席した者は試験期間終了日より起算し3日以内(土日祝日および登校禁止日は除く)に所定の届出用紙に、診断書等の証明書を添付して薬学事務課へ提出しなければならない。

総合演習試験・卒業認定試験も定期試験に準ずる。

欠席理由と添付する証明書

理由	添付する証明書
病気	医師の診断書
忌 引	関係する書類
就職試験	就職試験受験証明書
災害(台風、水害、火災等)	官公庁による被災証明書
交通関係	原則として交通機関等の証明書
その他	関係機関の証明書等

- *試験時間割表の誤認、寝坊、バスの自然渋滞による遅延、自転車、バイク、自動車の故障等は正当な欠席理由として認められないので注意すること。
- 注3) **再試受験資格の判定基準になる必修科目数について**: 当該学期に修得しなければならない必修科目数(再履修科目を含む、ただし実習および卒論は含まない)の3分の2以上が不合格の場合は再試験の受験資格を失う。 なお、追試験が認められている必修科目については除外する。
- 注4) 当該年度に学則第57条2項に該当する学生は注3を適用しない。
- 注5) 実習科目の単位認定に関する試験:担当者によって実施する。
- 注 6) 追試験・再試験を受験するには、所定の手続きをしなければならない。なお、これらの試験の範囲は原則として学期の全範囲とする(レポートにて評価する科目についても同様に所定の手続を行うこと)。 なお、追試験の成績は、80%に評価される。
- 注7) 追試験・再試験の追試験は実施しない。

8 レポート提出について

科目担当者からレポート提出の指示があったときは次の事項を厳守すること。

- (1) 提出締切日時を厳守の上、指定された提出先へ提出すること。
- (2) 科目名、担当者名及び提出者の学年、組、学生番号、氏名を明記すること。
- (3) 一度提出したレポートの変更、訂正は認めない。提出前に十分注意すること。
- (4) 追試験・再試験をレポートにて評価する科目があった場合は、追試験・再試験を受験する際に必要な手続きと同様に行うこと。

9 成績の評価と表示

成績の表示は下表に示す通りである。

成績	合・否	単位修得・単位未修得
Α		
В	合格	当該科目の単位修得
С		
D	不合格	
停	不合格 (受験停止)	当該科目の単位未修得
E	不合格(履修放棄)	

再試験の成績……合格の場合はCとする。

通年科目の試験は前・後期の2回を受験しなければならない。前期成績は5、4、3、2、1 で表示される。前期成績あるいは後期成績に「欠」の表示がある場合は、追試験を受験しなければならない。

成績通知書:前期試験の成績は9月上旬に、後期試験の成績は2月中旬に、当該年度の単位修得 状況および成績は3月下旬にアドバイザー教員より配付する。

前期警告: 前期試験の成績が不良で、次学年への進級が危ぶまれる場合は保証人宛に前期警告書を送付する。

必修科目の評点平均:必修科目(実習・演習を含む)の評価をA=5点、B=4点、C=3点に 換算し、その合計点を必修科目総数で割って評定の平均を算出する。なお、評定の平 均に基づく成績序列は年度末の進級発表時に提示する。

10 年次進級の判定

〈1~3年次〉

次の基準を満たした場合、2~4年次に進級することができる。

講義科目――必修科目で未修得単位数が累積5単位以内であること。 実習科目――当該年度内に行われた実習科目の全てを修得していること。

※演習科目(必修)は進級基準において講義科目に位置づける。

〈4年次〉

次の基準を満たした場合、5年次に進級することができる。

- ① 4 年次までの科目のうち、化学系実習IV、生物系実習IVを除き全ての科目を修得していること。
- ②共用試験(CBT、OSCE)に合格していること(単位認定には、共用試験に化学系実習 IVと生物系実習IVを含む)。

年次進級者は3月下旬に発表する。

11 再履修について

必修科目に未修得科目(単位)を残して進級した者は、次年度その科目を再び履修しなければならない。これを「再履修」という。※履修申請は不要。

12 留 年

定められた基準に達しないときは、次の年次に進むことができない(基準は「10. 年次進級の判定」参照)。また、同一学年に2年を越えて在籍することはできない(学則第57条)。

13 卒論教室配属と分科

卒論配属は、4年次より卒論教室に配属する。

3年次後期に卒論教室配属と分科に関するガイダンス、教室・研究室・センター説明会を実施し、その後卒論教室配属を行う。卒論教室の決定にともない学科が決定する。決定方法の詳細は、ガイダンスにて提示する。

一度、受け付けた申請内容は変更できないので、よく考慮の上申請すること。

14 伝達の方法

学生への通知や連絡はすべて掲示によって行う。

(1) 学年別掲示

学生への公示、告示、修学上必要な事項の伝達は主として掲示にて行う。「掲示の見落しは 学生自身の責めに帰する」ので必ず掲示を見る習慣をつけること。

(2) 休講・補講掲示

授業担当者より連絡があり次第、休・補講掲示板に掲示する。

授業開始時刻後30分を過ぎても授業担当者から連絡がない場合は不測の事故があったものとして自然休講となることもあるが、念のため薬学事務課へ問い合わせること。

(3) Web『東薬学生ポータル』による通知

補助的サービスとして、Web『東薬学生ポータル』にて講義の休・補講や講義室変更の情報、通知・案内および個人連絡を行う。但しあくまでも掲示板に掲示される通知を優先するので注意すること。

15 公共交通機関の運休、悪天候および災害時の措置

公共交通機関の事故、ストライキ、災害等により、JR中央線(東京〜高尾間)または京王線 (本線、相模原線)が運休された場合、以下の措置を講じる。

- (1) 午前6時現在において運休の場合は、午前中開始の講義を休講とする。
- (2) 午前10時現在において運休が解除されていない場合は、終日休講とする。

なお、緊急対応に関する連絡は可能なかぎり掲示板、学生ポータルにて掲示するので各自確認すること。

【備考】

- ・定期試験および追・再試験については、上記規程を準用する。なお、中止となった試験は延期 し、後日実施する。
- ・気象警報(大雨警報・大雪警報・暴風警報・暴風雪警報)が東京23区東部・西部および多摩北部・西部・南部のいずれかに発令された場合は、上記規程を準用する。
- ・大規模地震の警戒宣言が発令された場合は、上記規程を準用する。

上記の各線・各区間を除くJR各線および私鉄が運休した場合は平常どおり講義、定期試験および追・再試験を行う。

16 各種証明書発行手数料および追・再試験受験料について

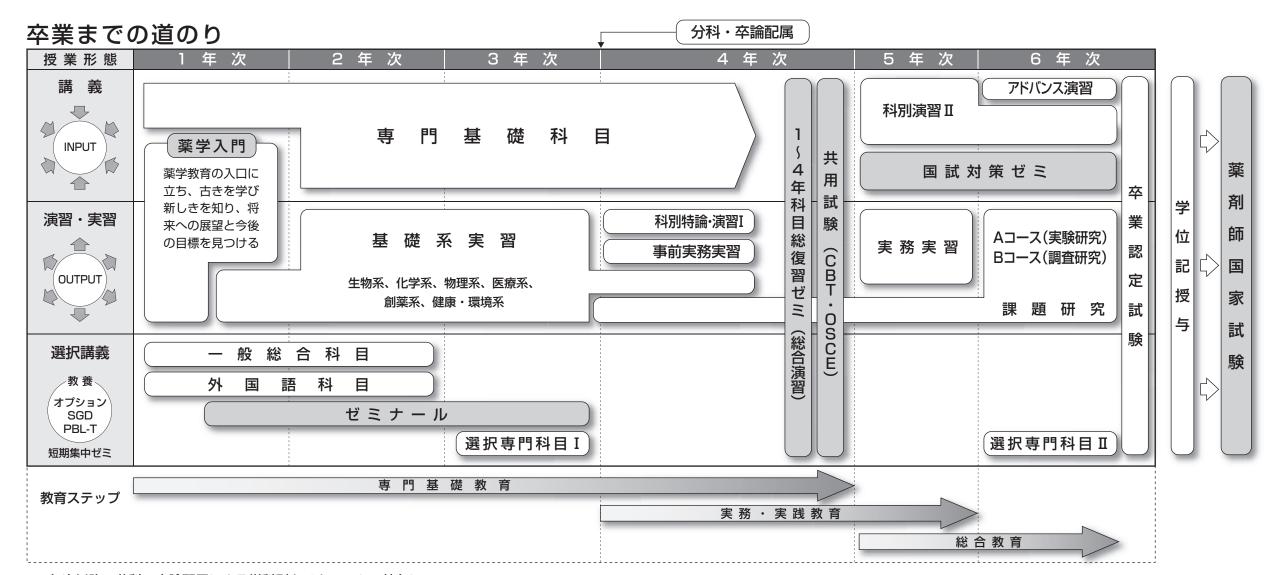
〈証明書〉

種類	手数料(1通あたり)	発 行
在学証明書	100円	
成績証明書	100円	学生会館学生スペース 自動発行機
卒業見込証明書	100円	日勤先11候 (8:45~17:00) 8月は15:00まで
英文証明書	1,000円	
特殊証明書	200円	薬学事務課 (教務担当)
調査書	100円	薬学事務課 (教務担当)

〈追・再試験料〉

種類	受験料(1科目あたり)	販 売
追試験受験料	500円	生協にて受験シールを販売
再試験受験料	1,000円	主励にて支票シールを販売

受験心得


受験に際しては下記の事項を守らなければならない。

- A. すべて監督者の指示に従うこと。
- B. 受験者は指示された場所に着席し、学生証を机上の指定された箇所におくてと。
- C. 遅刻者は、試験開始後15分まで入室を認める。交通機関の遅れを 見込み、早めの登校を心がけること。
- D. 試験開始後30分以内と試験終了10分前からは退室を認めない。
- E. 教科書、参考書、ノート等は鞄に入れ、指示された場所に置くこと。
- F. 教科書、参考書、ノート、電卓等の使用が許されている場合でも、 これらの貸借は禁止する。
- G. 携帯電話、PHS その他の通信機器等は電源を切って必ず鞄に入れること。
- H. 下敷及び計算機つき、翻訳機能つきの時計の使用は禁止する。
- 1. 答案に学生番号、氏名のないものは無効とする。
- J. 白紙の答案でも氏名を書き必ず提出すること。
- K. 退室の際には、答案は試験監督者の指示する方法に従い提出する こと。
- L. 答案を試験室から持ち出すと不正行為として処置する。
- M. 受験中不正行為と認められた場合には直ちに答案を没収し、退室 を命じ、その期間の試験は無効とする。
- N. 受験態度が不良とみなされた場合には直ちに受験を停止し、退室 を命ずる。

試験不正行為について

不正行為を行うと、不正行為を行った科目だけでなく、不正行為を行った 期間の試験は、全て無効となり、追・再試験の受験資格もなくなり、結果と して留年することになる。

ここで、不正行為を行った期間の試験とは、前期試験、後期試験、追・再 試験、卒業認定試験のそれぞれ一連の期間の試験をさす。

※4年次以降の分科・卒論配属による学科別カリキュラムの特色について

医 療 薬 学 科 医療法の改正により薬剤師が医療の担い手として位置づけられたことを踏 まえ、医療従事者としての高度な薬剤師職能教育を施します。 薬学の広範な基礎知識とともに、医療現場で求められる知識と技能、患者 さんや医療チームメンバーに対する適切な態度を身につけた薬剤師および 研究者の育成に重点を置きます。

■医療薬学科 特論・演習

- ・臨床で活躍する薬剤師を目指して
 - ・医薬品開発と臨床試験
- ・中医方剤学

- ・臨床で活躍する薬剤師を目指して(I)
- ・臨床で活躍する薬剤師を目指して(Ⅱ)
- 医薬品開発と臨床試験
- ・ラボラトリー演習(1)・ラボラトリー演習(2)

履修要項

医療薬物 学科

薬の創製を取り巻く科学と技術の進展に合わせ、疾病の予防、診断、治療 のために有用な創薬研究に挑戦できる人材の育成に重点を置きます。既存 の薬学の基礎および専門教育にとどまらず、薬の創製に関連する専門領域 の教育も幅広く行い、この分野の社会的なニーズを的確に捉える能力を育 てます。

■医療薬物薬学科 特論・演習

- ・創薬概論
- ・データ解析集中講座
- 論・中医方剤学

・医薬品創製と基礎(物理系・化学系)

- ・医薬品創製と基礎(生物系・医療薬学系)
- 創薬演習
- ・ラボラトリー演習 ・学術論文演習

医療衛生 薬学科

社会の高齢化や慢性・難治療性疾患の増加に伴い、疾病の予防にも積極的 に貢献できる薬剤師が求められています。こうした社会の期待に応えるべ く、健康・環境科学、老年期医療、再生医療、予防医療などに関して卓越 した知識・技能・態度を身につけた薬剤師および研究者の育成に重点を置 きます。

■医療衛生薬学科 特論・演習

- ・高齢者医療
- ・先端香粧品科学
- 論・医療衛生薬学小論文

・セルフメディケーション:薬剤師の関わり方 ・臨床応用薬学への課題研究チュートリアル

- ・薬剤師の職能と自己将来展望
 - ・ラボラトリー演習(1)・ラボラトリー演習(2)

履修要項

各卒論教室での教育・研究活動

授業計画

科目履修一覧

- I 1年次必修科目
- 2年次必修科目
- Ⅱ 3年次必修科目
- № 4年次必修科目
- Ⅴ 5年次必修科目
- Ⅵ 5.6年次必修科目
- Ⅲ 6年次必修科目
- Ⅲ 1.2年次選択科目
- Ⅸ 3年次選択科目
- X 6年次選択科目
- ※ 実習科目

五十音順索引

1年次必修科目 履修一覧

	前期	単位数	ページ	後期	単位数	ページ
	数学		40	数学	2	40
_	情報リテラシーI	1	42	薬学入門演習Ⅱ	1	50
総合科目	情報リテラシー演習	1	44			
合目	薬学入門	1	46			
目	薬学入門演習I	1	48			
外国語科目	英語 (講読)	_	52	英語 (講読)	2	52
科目	英語(コミュニケーション)	_	53	英語(コミュニケーション)	2	53
幼	物理学	1	54	分子物理化学	1	60
物理系薬学	化学結合論	1	56	分析化学	1	62
学	化学平衡論	1	58	無機化学	1	64
共化学	有機化学Ⅰ	1	66	有機化学Ⅱ	1	70
共 通 専	有機化学演習I	1	68	有機化学演習Ⅱ	1	72
門科	細胞生物学	1	74	機能形態学Ⅱ	1	80
目物	機能形態学I	1	76	生化学Ⅰ	1	82
系薬学	生物学	1	78	生化学演習	1	84
				微生物学I	1	86
薬と疾病				医療倫理	1	88
履修科目数	15科目			14科目		
単位認定科目数	12科目 (通年科目3科目は含めず)			14科目 (通年科目3科目を含める)		
認定単位数	12単位 (通年科目3科目分は含め	ず)		17単位 (通年科目3科目分を含める	3)	

2 年 次 必 修 科 目 履 修 一 覧

		前期	単位数	ページ	後期	単位数	ページ	
総合科目	外国語科目	薬学英語		92	薬学英語	2	92	
	物	物理的平衡論	1	93	熱力学・反応速度論	1	99	
	物理系薬学	機器分析学	1	95	放射化学	1	101	
	学	臨床分析化学	1	97				
	4 -	有機化学Ⅲ	1	102	有機化学Ⅳ	1	108	
	化学系薬学	機器スペクトル演習	1	104	生物有機化学	1	110	
	学	植物薬品学	1	106	漢方薬物学	1	112	
Į.		機能形態学Ⅲ	1	114	生化学Ⅲ	1	122	
通	生物	生化学Ⅱ	1	116	免疫学	1	124	
通 専 門	^未 薬 学	微生物学Ⅱ	1	118				
科	-	生理活性物質概論	1	120				
1	健康と環境				健康保持と疾病予防	1	126	
	医薬品を	応用統計学	1	130	生物薬剤学	1	128	
	医薬品をつくる	物理薬剤学	1	132				
		医療心理	1	134	薬の効き方I	1	136	
	薬と疾病				疾病と薬物治療I	1	139	
	疾病				疾病と薬物治療Ⅱ	1	141	
					医療情報	1	143	年間網
修科	泪数	14科目			14科目			
位認定科日数 13科目 (通年科目1科目は含めず)				14科目 (通年科目 1 科目を含める)			27科	
定单	位数	13単位 (通年科目 1 科目分は含めす	")		15単位 (通年科目 1 科目分を含める	5)		28単

【備考】再履修科目がある場合は、単位認定科目数に含める

		 前期	単位数	ページ		単位数	ページ	
総合科目	外国語科目	実用薬学英語		146	実用薬学英語	2	146	
		医薬品化学I	1	148	医薬品化学Ⅱ	1	151	
	化学系薬学	天然医薬品化学	1	149				
	生	病原微生物学	1	152				
	生物系薬学	臨床免疫学	1	154				
	字	バイオ医薬品とゲノム情報	1	156				
	健康と	生活環境と健康	1	158	化学物質と生体影響	1	161	
共	康と環境	栄養素の化学	1	160	食品と健康	1	163	
通	医薬品をつくる	製剤工学	1	164	応用薬剤学	1	166	
専門	でつくる				特許・レギュラトリアルサイエンス	1	168	
科		薬の効き方Ⅱ	1	170	疾病と薬物治療V	1	176	
目		疾病と薬物治療Ⅲ	1	172	薬の効き方Ⅲ	1	178	
		疾病と薬物治療Ⅳ	1	174	疾病と薬物治療Ⅵ	1	180	
	薬と疾病				テーラーメイド医療	1	182	
					疾病と薬物治療Ⅶ	1*	184	
					疾病と薬物治療「狐(医療情報演習)	1	186	
					一般用医薬品学	1	188	
	社会と薬学	薬学と社会	1	190	薬事関連法規と制度 I	1	192	1
履修科		13科目			13科目			_
単位認定		12科目 (通年科目1科目は含めず)			13科目 (通年科目 1 科目を含める)			2
認定単	位数	12単位 (通年科目1科目分は含める			14単位 (通年科目 1 科目分を含める	5)		1

[【]備考】再履修科目がある場合は、単位認定科目数に含める *疾病と薬物治療VIIと疾病と薬物治療VII(医療情報演習)は両者を併せて1単位とする(1科目とする)

				ᅏᅜᄳ	.0 .11	(4), ₩Π	77 1 T M L	A0 & 11
	삵솓上		前期	単位数	-	後期	単位数	ベージ
共	社会と 薬 学 化学系		■関連法規と制度Ⅱ ■大松齢	1	196			
共通専門科目	化学系薬 学		弱方総論 硬と環境 I	1	198 200			
胃 門	健康と 環境		₹⊂琼児Ⅰ ₹と環境Ⅱ	1	200			
科			『こ ^{現現』} 〕効き方Ⅳ(薬物治療演習)	1	204			
∄	薬と 疾病		ると薬物治療Ⅷ	1	206			
			医療薬学特論 - i 臨床で活躍する薬剤師をめざして	1	208			
		特論	医療薬学特論 - ii 医薬品開発と臨床試験	1	209			
	医療薬学科		医療薬学特論 - iii 中医方剤学	1	210			
	学科	.	医療薬学演習 I - i 臨床で活躍する薬剤師を目指して(I)	1	211			
		演習	医療薬学演習 I - ii 臨床で活躍する薬剤師を目指して(Ⅱ)	1	213			
			医療薬学演習 I - iii 医薬品開発と臨床試験	1	214			
科		特	医療薬物薬学特論 - i 創薬概論	1	216			
別	医唇	論	医療薬物薬学特論 - ii データ解析集中講座	1	218			
持	療薬物薬学		医療薬物薬学特論 - iii 中医方剤学	1	220			
論 ·	薬学科	演	医療薬物薬学演習 I - i 医薬品創製と基礎(物理系・化学系) 医療薬物薬学演習 I ii	1	221			
寅	1-1	習	医療薬物薬学演習 I - ii 医薬品創製と基礎 (生物系・医療薬学系) 医療薬物薬学演習 I - iii		223			
3			医療薬物薬学演習 I - iii 創薬演習 医療衛生薬学特論 - i		225			
		特	高齢者医療 医療衛生薬学特論 - ii	1	227			
	医療	論	先端香粧品科学 医療衛生薬学特論 - iii	1	228			
	療衛生薬学科		医療衛生薬学小論文 医療衛生薬学演習 I - i	1	229			
	学科	演	セルフメディケーション:薬剤師の関わり方 医療衛生薬学演習 I・ii	1	232			
		習	臨床応用薬学への課題研究チュートリアル 医療衛生薬学演習 I - iii	1	234			
	ク学的	井野	薬剤師の職能と自己将来展望 語特論	1	236			
	土子科	総合	5付酬 6演習 6合化学演習	0.5	237	 総合演習 総合物理演習	0.5	240
総合	金	総合	流河。 高演習 統合生物演習	0.5	238	総合演習 総合薬・疾病演習	0.5	241
総合演習	全学科	総合	演習 洽自薬演習	0.5	239	総合演習総合衛生演習	0.5	240
						総合演習 総合法規演習	0.5	241
	- 再履修		がある場合は、単位認定科目数に含める。		履 修 科 目 数 (各 学 科)			
			Nて、特論・演習は各々 3 科目を併せて ⊆する。	定	認定単位数			

認 定 単 位 数 16.5 単位	履	修各	科学	目科)	数	20科目
	認	定	単学	<u>位</u> 科)	数	16.5単位

5年次必修科目 履修一覧

			通年	単位数	ページ
学科別専門科目	全学科	科別実習	実務実習	20	384
総合科目	全学科	外国語	アドバンス英語	1	244
				修得单	単位数

21単位以上

5・6年次必修科目 履修一覧

				通年	単位数	ページ
	医療薬学科	 演 ²	Į.	医療薬学演習Ⅱ-i ラボラトリー演習(1)	1	246
科別	学科	演 習 		医療薬学演習Ⅱ-ii ラボラトリー演習(2)	1	247
特	医療薬物	· 中 习:	ZI.	医療薬物薬学演習Ⅱ-i ラボラトリー演習	1	248
論・	医療薬物薬学科	演習		医療薬物薬学演習II-ii 学術論文演習	1	249
演習	医療衛生	; - 7:	21	医療衛生薬学演習Ⅱ-i ラボラトリー演習(1)	1	250
	医療衛生薬学科		ä	医療衛生薬学演習Ⅱ-ii ラボラトリー演習(2)	1	251

履修単位数 (各学科)

2 単位

6年次必修科目 履修一覧

科 別 特				前期	単位数	ページ	後期		単位数	ページ
演習 医療衛生薬学演習IIーiii 1 アドバンス法規演習 0.5 254 アドバンス化学演習 0.5 254 アドバンス物理演習 0.5 254 アドバンス地理演習 0.5 254 アドバンス物理演習 0.5 254 アドバンス地理演習 0.5 254 アドバンス連康音習 0.5 254 アドバンス性物演習 0.5 254 アドバンス連演習 0.5 254 アドバンス健康・環境演習 0.5 254 アドバンス副薬演習 0.5 254 アドバンス薬・疾病演習 0.5 254 アドバンス薬・疾病演習 0.5 254 アドバンス薬・疾病演習 0.5 254 アドバンス薬・疾病演習 0.5 254 アドバンス薬・疾病演習 0.5 254		医療薬学科	演習				医療薬学演習Ⅱ-iii		1	259
アドバンス法規演習 0.5 254 アドバンス化学演習 0.5 25 アドバンス物理演習 0.5 25 アドバンス生物演習 0.5 25 アドバンス健康・環境演習 0.5 25 アドバンス創薬演習 0.5 25 アドバンス薬・疾病演習 0.5 26 6年必修科目 25 25 アドバンス薬・疾病演習 0.5 26		医療薬物薬学科	演習				医療薬物薬学演習Ⅱ-ii	ii	1	260
アドバンス物理演習 0.5 2 バ 全 アドバンス生物演習 0.5 2 ス 科 アドバンス健康・環境演習 0.5 2 アドバンス創薬演習 0.5 2 アドバンス薬・疾病演習 0.5 2 6年必修科目 6年必修科目		医療衛生薬学科	演習				医療衛生薬学演習Ⅱ-ii	ii	1	261
ドバ 全 アドバンス物理演習 0.5 名 ン 学ス 科 アドバンス健康・環境演習 0.5 名 アドバンス健康・環境演習 0.5 名 アドバンス創薬演習 0.5 名 アドバンス薬・疾病演習 0.5 名 6年必修科目 6年必修科目			アドバ	ンス法規演習	0.5	254	アドバンス化学演習		0.5	256
ン 学 ス 科 アドバンス健康・環境演習 0.5 アドバンス創薬演習 0.5 アドバンス薬・疾病演習 0.5 6年必修科目							アドバンス物理演習		0.5	256
ス 演習 アドバンス健康・環境演習 0.5 2 アドバンス創薬演習 0.5 2 アドバンス薬・疾病演習 0.5 2 6年必修科目 2							アドバンス生物演習		0.5	257
習 アドバンス劇楽演習 0.5 2 2 7 ドバンス薬・疾病演習 0.5 2 2 6 年必修科目		_					アドバンス健康・環境演	習	0.5	257
アドバンス薬・疾病演習 0.5 2 6年必修科目							アドバンス創薬演習		0.5	258
	Ħ						アドバンス薬・疾病演習	2]	0.5	258
							6年必修科目			
履修科目数 履修单位数							履修科目数	ļ	覆修単位	数

8 科目

4 ~ 6 年 次 必 修 科 目

		通年	単位数	ページ
科別実習	全学科	課題研究	14	387

6年次修得単位数 **20.5単位**

4.5単位

·2年次選択科目(総合科目

● 一般総合科目

	前期	単位数	ページ	後期	単位数	ページ
	健康科学(男子クラス)*	1	264	健康科学(女子クラス)*	1	264
	地球環境概論(女子クラス)*	1	266	地球環境概論 (男子クラス) *	1	266
-	芸能・文化*	1	268	哲学	1	269
般総	現代経済論*	1	270	国際関係論	1	271
合科	美術・イラストレーション	1	272	コミュニケーション論*	1	275
目	文章表現	1	273	文章表現	1	273
	法学	1	277	法学	1	277
	健康スポーツ*	1	281	情報リテラシーⅡ*	1	279

【備考】

- 1. 上記科目より4科目(4単位)以上修得すること。
- 2. 「文章表現」「法学」については、前期・後期の両学期に同じ講義内容で開講する。なお、後期の履修において、 前期に単位修得した同科目を履修することはできない。

3. 上記*については、1年次生のみ対象科目である。

外国語科目

	前期	単位数	ページ	後期	単位数	ページ
	英語検定 [1	282	英語検定Ⅱ	1	283
外	英会話I	1	284 · 285	英会話Ⅱ	1	288 · 289
国語	英会話 I (科学英語コミュニケーション)	1	286	英会話 I (科学英語コミュニケーション)	1	290
科	ドイツ語I	1	292	ドイツ語Ⅱ	1	293
目	中国語I	1	294	中国語Ⅱ	1	295
	フランス語 I	1	296	フランス語Ⅱ	1	298

【備考】

上記科目より2科目(2単位)以上修得すること。
 各外国語科目Ⅱのみを履修することはできない(各外国語科目Ⅰを履修し単位認定されたもののみⅡを履修できる)。

修得単位数

修得単位数

4 単位以上

2 単位以上

3年次選択科目(専門科目)履修一覧

	前其	Я	単位数	ページ	後	期	単位数	ページ
	病理組織学	(A)	1	304	薬局管理学	(A)	1	305
専	構造有機化学	(B)	1	308	反応有機化学	(B)	1	307
門	細胞工学	(C)	1	309	東洋医学概論	(C)	1	311
科目	臨床医学概論	(A)	1	312	薬剤経済学		1	315
I	医薬品開発	(B)	1	313				
	香粧品科学	(C)	1	316				

【備考】

修得単位数 4 単位以上

2. 上記科目より4科目(4単位)以上修得すること。

^{1. (}A) (B) (C) 科目の履修方法については、4年進級時に医療薬学科を希望するものは(A) 科目、医療薬物薬学科を希望するものは(B) 科目、医療衛生薬学科を希望するものは(C) 科目を履修することが望ましい。

6年次選択科目 履修一覧

		前期	単位数	ページ	前期	単位数	ページ
専門科目Ⅱ	全学科	バイオスタティスティクス I (緩和医療の最前線)	1	320	病原微生物学特論 (感染制御学特論)	1	335
		バイオスタティスティクスⅡ (生物統計学Ⅱ)	1	322	医薬品生産特論	1	336
		バイオスタティスティクスⅢ (生物統計学Ⅲ)	1	324	多変量解析	1	337
		マーケティング I (医薬品マーケティング I)	1	326	治験の実際 (創薬育薬分野 における薬剤師)	1	339
		マーケティングⅡ (医薬品マーケティングⅡ)	1	328	病態生理学特論	1	340
		マーケティングⅢ (医薬品マーケティング戦略)	1	330	医薬品開発特論 I (構造有機化学特論)	1	342
		マーケティングⅣ	1	332	医薬品開発特論Ⅱ (有機合成化学特論)	1	344
		医療経済学特論	1	334	臨床薬理学特論	1	346

		後期	単位数	ページ	
	医療薬学科	臨床薬物動態学特論	1		
専	学科	病理解剖学特論	1		
門	医療薬	定量的構造活性相関	1		
科目	医療薬物薬学科	リード化合物の創製と 最適化	1	348	
П	医療衛生薬学科	感染制御学	1		
		ゲノム情報特論	1		

修得単位数

5 単位以上

I

1年次 必修科目

■総合科	目
------	---

[一般総合科目]

数 学	40
情報リテラシー I	42
情報リテラシー演習	44
薬学入門	
薬学入門演習 [48
薬学入門演習Ⅱ	50
[外国語科目]	
英語(講読)	
英語 (コミュニケーション)	53
■共通専門科目	
[物理系薬学]	
物理学······	54
化学結合論 ·····	
化学平衡論	
分子物理化学	
分析化学	62
無機化学	64
[化学系薬学]	
有機化学Ⅰ	
有機化学演習 [68
有機化学Ⅱ	
有機化学演習Ⅱ	72
[生物系薬学]	
細胞生物学	74
機能形態学 [76
生物学	
機能形態学Ⅱ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
生化学 [
生化学演習	
微生物学 [86
[薬と疾病]	
医療倫理	88

数 学 Mathematics

学年 第1学年 科目分類 必修 前期·後期 通年 単位 2

准 教 授 **大河内 広子** (A·B、C·D、E·F)

非常勤講師 **片野 修一郎**(G·H)

学習目標 (GIO)

見識ある人間としての素養として、また薬学を学び研究するための基礎として、数学の「微分積分学」と「線形代数学」の2分野を理解し利用できるようになることを目標にします。この目標の達成のため、次の(1) \sim (3)を心掛けて学習して下さい。

- (1) 説明を聞くだけでなく、具体的な計算等の演習を実行する。
- (2) 基本的な事柄を深く理解する経験を持つ。
- (3) 定理や命題の具体的な応用例を数多く持つ。

▋行動目標 (SBOs)

1	写像の定義と具体例、写像の合成、逆写像を説明できる。
2	ラジアン、三角関数、逆三角関数、ラジアンの場合の極限公式、三角関数・逆三角関数の微分を説明できて 計算できる。
3	指数関数と等比数列との関連、一次関数と等差数列との関連を説明できる。
4	ネイピア(Napier)の数、指数関数の微分、指数関数の性質や具体例を説明でき、かつ、計算できる。
5	対数関数の性質や具体例を説明できる。また、対数目盛りのグラフを利用できる。
6	1変数関数の場合について、①合成関数の微分、②積・商の微分、③対数微分法、④媒介変数表示の微分、 ⑤陰関数の微分を計算できる。
7	1変数関数の極値、グラフの凹凸、変曲点について、それぞれ説明できる。
8	2変数 (多変数) 関数の場合について、偏微分の定義とグラフから考えた意味を説明でき、かつ、計算ができる。
9	2変数(多変数)関数の場合について、合成関数の微分の計算ができる。
10	1変数関数について、定積分・不定積分の定義を説明でき計算できる。
11	異常(特異)積分について説明でき計算できる。
12	2変数(多変数)関数の重積分について、定義を説明でき、累次積分によって計算できる。また、積分の順 序の交換をできる。
13	1変数関数の置換積分・部分積分の計算ができる。
14	行列の演算を計算できる。
15	①線形写像の合成と行列の積との関連、②逆写像と逆行列の関連をそれぞれ説明できる。
16	Gauss – Jordanの消去法(掃き出し法)により、①線形連立方程式の解、②逆行列 をそれぞれ求められる。
17	ベクトルの1次独立、1次従属の定義と図形的な意味を説明できる。
18	行列の階数を、①掃き出し法との関連から、②行ベクトル達[または列ベクトル達]の張る空間の次元との関連から、それぞれ説明できる。
19	行列式の定義、図形的な意味、性質を説明できる。
20	行列式の値を求める計算を、①3次以下の場合はSarrusの法則(たすきがけ)で、②4次以上の行列式の場合は行列式の性質や余因数展開などを用いて次数を下げて、それぞれ実行できる。
21	線形写像の定義と性質を説明できる。
22	線形写像の面積・体積の変化率と(その線形写像の表現行列の)行列式の値との関連を説明できる。

回数	担 当	内 容	対応 (SBOs)
1	大河内、片野	写像	1
2~3	//	三角関数、逆三角関数	2
4~5	//	指数関数、対数関数	3、4、5
6~9	//	1 変数関数の微分法	6、7
10~11	//	多変数関数の微分法(偏微分)	8, 9
12	//	1 変数関数の積分法	10、11
13~14	//	重積分の定義と累次積分による計算法	12

必 修 年

選3択年

科次

回数	担 当	内 容	対応 (SBOs)
15~16	//	1 変数関数の積分の計算法(置換積分、部分積分)	13
17	//	行列の演算	14、15
18~20	//	消去法による連立方程式の解法、逆写像の求め方	16
21	//	ベクトルの1次独立・1次従属、行列の階数	17、18
22~24	//	行列式の性質と計算法	19, 20
25 ~ 27	//	線形写像の定義と性質、行列表現、面積・体積の変化率	21, 22

授業で行っている工夫:・説明と演習を交互にいれることで、集中力の維持と、各人の理解状況の確認を行うようにします。

・演習では、グループ学習を取り入れ、学生同士で知識や技術を高めあう機会を設定します。

・レポート提出や小テストを実施し、学習到達度のフィードバックを行います。

モデル・コアカリ:F(6)

キュラムとの関連 1.1次および2次関数の基本概念を理解し、それを用いた計算ができる。(知識・技能)

- 2.指数関数、対数関数の基本概念を理解し、それを用いた計算が出来る。(知識・技能)
- 3.三角関数の基本概念を理解し、それを用いた計算ができる。(知識・技能)
- 4. 微分・積分の基本概念を理解し、それを用いた計算ができる。(知識・技能)
- 5. 基本的な微分方程式の計算ができる。(技能)
- 6. 行列の基本概念を理解し、それを用いた計算ができる。(知識・技能)
- 7.順列と組合せの基本概念を理解し、それを用いた計算ができる。(知識・技能)

成績評価方法:1)形成的評価

- a)知識:演習問題を解くことで、応用例を知り、理解を深める。
- b) 技能:計算演習によって、正確な知識とともに、技術を高め、結果をフィードバックする。
- 2)総括的評価 a)知識:定期試験を行う。レポート、出席状況、小テストの結果などを総合的に評価する。

教 科 書:大河内クラス:微分積分(矢野健太郎・石原繁偏 裳華房)

教養の線形代数(村上正康他著 培風館)

片 野クラス:自前のプリントを用いるので、特定の教科書をなぞることはしません。

講義の補足や自習用の教科書・参考書としてお奨めできる本を下欄に挙げました。 その中の1と2または4は教科書として使っても良いと思っている本です。

数学の本は何か一冊手元に置いておくことを強く勧めます。また、高等学校の数 学Ⅲの教科書は非常に便利なので、可能ならぜひ入手して下さい。

参 考 書:大河内クラス:薬学のための微分と積分(十井 勝著 日科技連出版社)

…薬学に関連した応用例が載っている。

理工基礎 微分積分学(柳原二郎他著 理学書院)

…微分積分の理論面にも興味のある学生向き。やりがいのある演習問題も充実している。

片 野クラス: 1.三宅敏恒「線形代数学」(培風館)

2. 石原繁·浅野重初「理工系入門 微分積分」(裳華房)

3.水田義弘「大学で学ぶ やさしい微分積分」(サイエンス社)

4. 長崎憲一·横山利章「明解 微分積分」(培風館)

2は、数学に苦手意識がない人なら問題なく取り組めると思います。練習問題も

多い。

3は、数学が得意でない人向きです。大きい活字で丁寧に説明が書かれています。 4は2と3の中間という感じですが、例題や練習問題が豊富で高校数学の復習に

もページが割かれています。この本の内容が理解できれば合格です。

オフィスアワー: 大河内クラス: 授業の前後の時間帯または水曜日・土曜日の「数学関連の学習支援」の時間。 「数学関連の学習支援」の教室 他の時間は要予約。

> 片 野クラス:授業の前後の時間帯または土曜日の「数学関連の学習支援」の時間。 「数学関連の学習支援」の教室

所属教室:応用統計学研究2号棟607号

特 記 事 項:「数学関連の学習支援」は、教員への質問だけでなく、学生の自習の場所としても利用できます。 日時・場所は掲示等を見てください。

教員からの一言: わからない事を溜めないように、一回ごとの授業で復習を実行して下さい。 毎週の予定(または生活習慣)として、「この時間は数学の自習」という時間帯と場所をとって下

さい。

XI

情報リテラシー I

Information Literacy I

学年 第1**学年** 科目分類 必修 前期·後期前期 単位 1

教授 **土橋** 朗 医薬品情報解析学教室 (A·B、G·H) 准教授 **小杉 義幸** 機能性分子設計学教室 (C·D、E·F)

学習目標 (GIO)

情報とは何かを理解し、情報を管理・活用するため、コンピュータを使いこなす能力(コンピュータリテラシー)とインターネットを使いこなす能力(インターネットリテラシー)を理解する。 さらにネット社会の成立と社会の情報化がもたらす社会システムの変化および個人の活動への影響を理解する。

┃ 行動目標 (SBOs)

•	
1	情報化社会におけるリテラシーの必要性を社会的背景をふまえて説明できる。
2	PCの5大装置の総称とその役割を説明できる。
3	コンピュータの取り扱う文字と文字の符号化を説明できる。
4	インターネットやLANなどのネットワークを構成する機器およびサーバの名称とその役割を説明できる。
5	代表的なTCP/IPプロトコルの名称を列挙し、そのプロトコルが提供するインターネットサービスを説明できる。
6	検索エンジンのしくみとその利用法を説明できる。
7	情報の収集と活用を目的としたデータベースの利用法を説明できる。
8	関係データベースにおけるSQLの基本的な記述法を説明できる。
9	研究論文、ビジネス文書および電子メールの構成要素を説明できる。
10	医療情報の標準化に関わるコード体系および情報交換プロトコルの名称と特徴を説明できる。
11	代表的な構造化文書の名称と特徴を説明できる。
12	情報化社会における暗号による秘匿と認証の必要性を説明できる。
13	共通鍵暗号方式と公開鍵暗号方式の違いとその特徴を説明できる。
14	知的財産権を分類し、特許権および著作権を説明できる。
15	デジタル情報の特徴とその著作権に関わる問題点を説明できる。人と機械を関係づけるインターフェースの 特徴を理解し、アフォーダンスとは何かを説明できる。
16	人と機械を関係づけるインターフェースの特徴を理解し、アフォーダンスとは何かを説明できる。人が犯す 誤りを分類し、その特徴を説明できる。
17	人が犯す誤りを分類し、その特徴を説明できる。情報の視覚化と化学構造の表現法の関連を説明できる。
18	情報の視覚化と化学構造の表現法の関連を説明できる。情報のデジタル化がもたらす社会および個人への影響を説明できる。
19	情報のデジタル化がもたらす社会および個人への影響を説明できる。

回数	担 当	内 容	対応 (SBOs)
1	土橋、小杉	情報リテラシーの概念	1
2	//	PCのしくみと特徴	2
3	//	コンピュータにおけるデータ表現と文字コード	3

選3択年

尺斗目	白ン
Σ	Π
ラ羽里不日	是图斗目

回数	担 当	内 容	対応 (SBOs)
4	//	インターネットのしくみと特徴	4、5
5	//	インターネットにおける情報検索	6
6	//	情報検索とデータベース	7、8
7	//	PCによる文書作成	9
8	//	医療情報の標準化と構造化文書	10、11
9	//	情報化社会における認証と秘匿	12、13
10	//	情報化社会と法律	14、15
11	//	情報デザインとユーザビリティー	16、17
12	//	情報の可視化と化学構造式	18
13	//	情報化社会で得るものと失うもの	19
		·	

授業で行っている工夫:情報リテラシー I 講義用に教科書「医療情報リテラシー」を編纂し、各章ごとに要点をまとめた PowerPoint マテリアルで講義を行っている。

すべての講義マテリアルと自習用問題をWebClassで公開している。また、出席カードを用いて講義への感想や質問を収集し、WebClassの会議室で回答を行っている(土橋)。

モデル・コアカリ: C15 薬物治療に役立つ情報 (1) 医薬品情報 キュラムとの関連 主にF 薬学準備教育ガイドライン (7) ITに対応

成績評価方法: 1) 形成的評価 a) 知識: 講義数回ごとに自習用問題をWebClassに公開し、解答を促してい

る。また、毎回、講義への感想や質問を記述させ、WebClassで回答を公開する(土橋)。

2)総括的評価 a)知識:定期試験の成績および出席状況を加味して総合的に評価する。なお、

出席不良者(1/3以上の欠席者)に対しては受験停止の措置を講ず

る場合がある。

教 科 書: 医療情報リテラシー 講義編

小杉

義幸

(著者 土橋 朗/小杉義幸/佐藤弘人/倉田香織、政光プリプラン)

参 考 書:情報処理活用能力検定 情報活用試験 1 級·2 級問題集(専修学校教育振興会編)

// 1~3級公式テキスト

医療情報 情報処理技術編/医学医療編/医療情報システム編(日本医療情報学会編) IT Text 情報リテラシー(オーム社)

オフィスアワー: 土橋 朗 特に設定しませんが、できれば前もって予約をしてください。 研究2号館2階206号室

特に設定しませんが、できれば前もって予約をしてください。

DR棟4階リサーチセンター研究室2

所属教室:土橋朗医薬品情報解析学教室研究2号館2階206号室

小杉 義幸 機能性分子設計学教室 Office:DR棟4階リサーチセンター研究室2

教員からの一言: WebClassの会議室は開講期間中いつでも開いています。講義時間中の出席カードによる感想や 質問ばかりでなく、直接的な会議室への質問を歓迎しています(土橋)。

情報リテラシー演習

Exercise in Information Literacy

 教授
 土橋
 朗(A·B、G·H)

 准教授
 小杉
 義幸(C·D、E·F)

 助教
 佐藤
 弘人(B、D、F、H)

 助手
 倉田
 香織(A、C、E、G)

学習目標 (GIO)

薬学を学ぶ上で基礎となる情報の収集・評価・加工・提供・管理に必要なデータや情報を有効活用できるようになるために、情報の授受に効果的なコンピュータやインターネットの利用法に関する基本的知識・技能・態度を修得する。

▋行動目標 (SBOs)

1	ビジネス文書やレポートなど、文書に定められた一般的なルールを説明できる。(知識)
2	OSの機能を活用して、電子ファイルの作成および管理ができる。(技能)
3	ネットワークを活用して、情報の受信・発信ができる。(技能)
4	ネットワーク利用におけるルール・マナーを遵守する。(態度)
5	信頼性の高いホームページで公開されている情報を収集できる。(技能)
6	ワープロソフト(MS Word)を用いて、レポートを作成することができる。(技能)
7	プレゼンテーションソフトウェア(MS PowerPoint)を用いて、ポスターやプレゼンテーションスライド を作成することができる。(技能)
8	表計算ソフトウェア(MS Excel)を用いて、表計算処理を行うことができる。(技能)
9	表計算ソフトウェア(MS Excel)を用いて、グラフ描画を行うことができる。(技能)
10	表計算ソフトウェア(MS Excel)を用いて、データ管理を行うことができる。(技能)
11	化学構造式描画ソフトウェア(ChemBioOffice)を用いて、平面構造式および3次元構造式を描画することができる。(技能)

回数	担 当	内 容	対応 (SBOs)
1	土橋、小杉、 佐藤、倉田	ファイル管理	1~4
2	//	医薬品情報の取得	3~5
3	//	Wordによるプリントの作成	1, 2, 6
4	//	Wordによる医薬品情報提供文書の作成	1~6
5	//	PowerPointによるポスターの作成	1、7
6	//	PowerPointによるプレゼンテーションスライドの作成	1、5、7
7	//	Excelによる表計算	8
8	//	Excelによる関数の利用	8
9	//	Excelによるグラフ描画	1, 9
10	//	データベースを用いたデータ管理	10

必4修年

選6

回数	担当	内 容	対応 (SBOs)
11	//	調査・実験レポートの作成	1, 5, 6, 8, 9
12	//	平面構造式の描画	1, 11
13	//	3次元構造式の描画	3, 5, 11

授業で行っている工夫: 入学以前の情報教育で身につけた知識・技能は個人差があるため、TAを教室内に配置し、PCの

環境設定や使用ソフトはできるだけ統一している。演習用教材は画面キャプチャ図を多用し、これらはWebClassを介して公開している。確実な技能習得のため、医療関連の素材を活用した演習課題を適宜用意し、提出された課題へのフィードバックを行う。

モデル・コアカリ: Bイントロダクション (1) 薬学への招待

キュラムとの関連 C15 薬物治療に役立つ情報 (1) 医薬品情報

主に薬学準備教育ガイドラインF(7) ITに対応

成績評価方法:1)形成的評価 a)知識:WebClassに提示した演習問題を繰り返し行い、自己評価する。

b) 技能:示された模範解答例を参考に自己評価する。WebClass、メール等で こまめにフィードバックする。

c)態度:課題の作成および提出の際に観察し、WebClass、メール等でフィードバックする。

2) 総括的評価 a) 知識:繰り返しの形成的評価で改善が認められれば合とする。

b) 技能:最終提出課題の完成度により評価する。

c) 態度:繰り返しの形成的評価で改善が認められれば合とする。

教 科 書:医療情報リテラシー 演習編

(著者 土橋 朗/小杉義幸/佐藤弘人/倉田香織、政光プリプラン)

参考書:大学生のためのパソコンはじめの一歩(大学生協東京事業連合編)

オフィスアワー: 全員 特に設定しませんが、できれば前もって電子メール等で予約をしてください。

所属教室: 土橋朗 医薬品情報解析学教室 研究2号館2階206号室

小杉 義幸 機能性分子設計学教室 Office:DR棟4階リサーチセンター研究室2

佐藤 弘人 機能性分子設計学教室 研究2号館3階306号室 倉田 香織 医薬品情報解析学教室 研究2号館2階206号室

特 記 事 項: 授業開始前に各自で授業用のノートPCの準備(ソフトウェアのインストールおよびLANへの接続を表する。 対象のは根子等を確認すること

続テスト)が必要である。詳細は掲示等を確認すること。

演習テーマによりクラス編成および授業担当者が変更になることがある。

教員からの一言: 高校までの「情報」の授業を発展させて、医薬品情報および患者情報を扱うために必要なデータ 処理の基礎技術を身につけていただきます。専門の学習はこれからですが、医薬品添付文書や薬 用量計算、診療報酬表など、可能な限り専門の学習につながる医療系の題材を選んでいきますので、 楽しみにしてください。操作方法等でわからないところは、遠慮せずに質問してください。

集 中 講 義: 第5回に予定されている PowerPoint の演習に関しては高校レベルの演習とし、希望者のみ対象の集中授業とする。

薬学入門

Introduction to Pharmacy

学 年	第1学年	科目分類 必	修	前期・後期	前	期	単 位	1
教 授	横松 力	教	授 豊田	裕夫		教	古田	隆
教 授	渋澤 庸一	教	授 三巻	祥浩		教	受 松本	有右
准教授	宮本 法子	准教	対授 竹内	裕紀		准教护	受 松本	隆司

学習目標 (GIO)

薬学教育は社会の薬学に対するニーズをもとに大きく見直されました。日本薬学会が主催して薬学教育モデル・コアカリキュラムが作成され、薬学教育6年制においては医療薬学に重点をおいた教育が行われます。皆さんはこれから薬学を体系的に学んでいきますが、その前に薬剤師や薬学に対する社会のニーズや期待を良く理解しておく必要があります。薬学入門では、薬剤師に求められる社会的ニーズと期待、医療スタッフとしての薬剤師の役割、先端の薬学研究などについて、学外・学内の専門家の方々に講義していただきます。本講義を通じて、広い視野から「薬学」を考える力を養って下さい。また、医療従事者としての倫理観についても学んで下さい。

講師紹介

飯田 教雄 ライオン (株) 企画管理部長

笠師久美子 北海道大学病院薬剤部副薬剤部長

川村 和美 スギメディカル教育事業部主任研究員

杉本 八郎 京都大学教授

関野 秀人 厚生労働省、医薬食品医療機構審査管理室長

中島 宏昭 昭和大学客員教授、東京女子医科大学診療教授、医学博士

並木 徳之 静岡県立大学教授

三輪 売寿 三輪売寿法律事務所、弁護士、薬学博士 増山ゆかり サリドマイド福祉センター常務理事

笹津 備規 本学学長

伊東 晃 本学薬学部長

原 博 本学客員教授 黒田 明平 本学講師

片桐 文彦 本学助教

下枝 貞彦 本学准教授

▋行動目標 (SBOs)

1	薬学の歴史的な流れと医療において、薬学が果たしてきた役割を概説できる。(知識、態度)
2	薬剤師の活動分野について概説できる。(知識、態度)
3	医薬品の適正使用における薬剤師の役割について概説できる。(知識、態度)
4	医薬品の創製(創薬)における薬剤師の役割について概説できる。(知識、態度)
5	疾病の予防・健康管理における薬剤師の役割について概説できる。(知識、態度)
6	先端医療研究・開発における薬剤師の役割について概説できる。(知識、態度)
7	「薬とは何か?」、「薬学とは何か?」、「薬剤師の役割とは何か?」を概説できる。(知識、態度)
8	生命の尊さと医療のかかわりについて考えてみよう。(態度)

回数	担 当	内 容	対応 (SBOs)
1	横松	オリエンテーション他	1~8
2	笹津、伊東	本学の歴史と新薬学生への期待	1, 7
3	黒田、片桐、下枝	研究の面白さにふれてみよう	4、5

回数	担 当	内 容	対応 (SBOs)
4	原	くすりの発見	1, 4, 5, 6, 7
5	川村	薬剤師の倫理とは?-薬剤師の使命と心構え-	2、3、7
6	三輪	司法の立場から:医療の倫理と薬剤師の業務	1、6、7
7	土橋	著作権について(ポスター作成とレポート作成に関連して)	1~8
8	杉本	薬をつくる苦労と感動	4, 5, 6
9	中島	生命の尊厳 医療の担い手としての薬剤師	2、3、7
10	笠師	スポーツファーマシストに期待すること	2、3、5、7
11	関野	行政の立場から薬剤師に期待すること	2, 8
12	並木	病院薬剤師の仕事 UP TO DATE	2, 7
13	飯田	企業における薬剤師の役割	4、5、6
14	増山	薬害被害者の立場から薬剤師に求めること	5
15	豊田	薬学入門や薬学入門演習 [を受講して	1~8

授業で行っている工夫: 1) 薬学入門関連テキストをポートフォリオとして利用しますので配付資料や講義時のメモを一 元的に保存して下さい。

2) 講義終了後、当日中に感想文を提出してもらいますので、メモなどをとり集中して受講して下さい。

3) 感想文を講師に見てもらいますので、丁寧に書いて下さい。

モデル・コアカリ: A 全学年を通して:ヒューマニズムについて学ぶ

キュラムとの関連 B イントロダクション (1)薬学への招待

成 績 評 価 方 法: 出席状況と感想文によって総合的に評価する。

参 考 書: スタンダード 薬学シリーズ(日本薬学会編)

第1巻「ヒューマニズム・薬学入門」(東京化学同人)

オフィスアワー: いつでも可。要事前連絡して下さい。

所属教室: 構松 力 分子機能解析学教室 研究 1 号館 3 階 3 0 3 号室

豊田 裕夫 臨床ゲノム生化学教室 研究2号館6階606号室

古田 隆 臨床薬学 医療薬学研究棟2階

渋澤 庸一 薬物生体分析学 研究2号館4階405号室

三巻 祥浩 漢方資源応用学教室 研究2号館4階408号室

松本 有右 薬局管理学講座 医療薬学研究棟4階

宮本 法子 社会薬学研究室 教育 1 号館 2 階

竹内 裕紀 医療実務薬学教室 DR研究開発センター 3階

松本 隆司 有機合成化学 研究2号館3階304号室

特記事項:「時間割」

全クラス合同講義の場合は、3401講義室〔月曜日4限と5限(感想文を書く)〕

教員からの一言:薬学とは何か?社会から求められている薬学の役割とは何か? さまざまな薬学の可能性を、心をオープンにして考えていこう。

薬学入門演習 I

Introductory Seminar in Pharmacy I

学 年	第1学年	科目分類	必修		前期・後期	前	期			単 位	1	
教 授	山田 安彦		教 授	内野	克喜			教	授	渡辺	謹三	
教 授	林 良雄		教 授	松本	有右			教	授	土橋	朗	
准教授	杉浦 宗敏		准教授	佐藤	隆			助	教	成井	浩二	
助手	倉田 香織											

学習目標 (GIO)

薬学部に入学した皆さんは、健康、疾病、あるいは医療に対する関心を高くもっていますが、入学前に持っている知識や感覚は、必ずしも皆さんに共通した理解に至っているとは言えません。そこで、我が国の医療制度あるいは医療従事者の社会における活動状況と責務の概略を知り、薬学生としての学習に対するモチベーションを高めるために、卒業生の活躍する場を訪問し、その体験に基づくグループ討議を行ないます。本演習を通して共感的な態度、あるいは能動的な学習態度を身につけて下さい。

▋行動目標 (SBOs)

〈早期体験実習〉

1	病院における薬剤師および他の医療スタッフの業務を見聞し、その重要性について自分の意見をまとめ発表 する(知識・態度)。
2	開局薬剤師の業務を見聞し、その重要性について自分の意見をまとめ発表する(知識・態度)。
3	製薬企業および保健衛生、健康に関わる行政機関の業務を見聞し、社会において果たしている役割について 討議する(知識・態度)。

〈スモールグループディスカッション (SGD)〉

4	対人関係に影響を及ぼす心理的要因を概説できる。
5	相手の心理状態とその変化に配慮し、適切に対応する(知識・態度)。
6	対立意見を尊重し、協力してより良い解決法を見出すことができる(技能)。

〈ポスター作成演習〉

7	チームワークの重要性を例示して説明できる。
8	チームに参加し、協調的態度で役割を果たす(態度)。
9	MS PowerPoint でポスターを作成することができる(技能)。
10	MS PowerPointを使って発表できる(技能)。

回数	担 当	内 容	対応 (SBOs)
1~2	アドバイザー	SGD (1) (2) 早期体験実習に向けて	4、5、6、7
3	別に定める	早期体験実習 直前説明会	1, 2, 3
4~6	//	早期体験実習	1, 2, 3
7~10	//	早期体験実習を終えて(ポスターの作成)	1、2、3、4、5、 6、7、8、9
11	アドバイザー	SGD (3) ポスターで発表	4, 5, 6, 7, 8, 9
12~13	別に定める	早期体験実習報告会	1, 2, 3, 4, 5, 6, 7, 8, 9, 10

XI

回数	担 当	内 容	対応 (SBOs)
実習施設		病院・薬局 菊名記念病院、社会保険中央総合病院、東京慈恵会医科大学 附属第三病院、東京医科大学医学部付属八王子病院、武蔵野 赤十字病院、東海大学医学部付属八王子病院、武蔵野 赤十字病院、東京医科大学病院、東京逓信病院、杏林大学医 学部付属病院、八王子薬剤センター薬局、アイン薬局 企業 (世堂(リサーチセンター)、ヤクルト(中央研究所)、あす か製薬(西東京事業所)、佐藤製薬(八王子工場)、帝人ファー マ(生物医学総合研究所)、ツムラ(漢方記念館)、アサヒビー ル(食の安全研究所)、協和発酵キリン(東京リサーチパーク) 行政 東京都健康安全研究センター	

授業で行っている工夫: 1)薬学入門関連テキストをポートフォリオとして利用します。学習記録や討論記録などを一元 的に保存して下さい。

- 2)アドバイザーSGDを早期体験実習の事前・事後に行います。早期体験実習の事前調査やフィードバックとして利用します。
- 3) 早期体験実習のプロダクトとしてポスターを作成します。体験実習を客観的に見直し、自分以外の人の意見にも耳を傾け、グループで協力しあってポスターを作成して下さい。また、情報リテラシー演習で学習した技術を実践して下さい。

モデル・コアカリ: B イントロダクション (2) 早期体験実習 キュラムとの関連

成績評価方法:1) 形成的評価 a) 知識:早期体験の前後においてSGDを行い細やかにフィードバックする。

b) 技能: MS PowerPoint を活用する。

c) 態度:SGDを通して細やかにフィードバックする。

2) 総括的評価 a) 知識:出席、態度、感想文、ポスターおよびポートフォリオなどを総合的に 評価する。

b) 技能:ポスター作成を行う。

c) 態度: 演習すべてに出席することを合格要件とする。 やむをえず欠席した場

合は、アドバイザーの指示に従うこととする。

教 科 書:薬学入門関連テキスト(平成23年度版)

オフィスアワー: 各アドバイザーが別に定める。

特 記 事 項:実施時期に関する補足:早期体験実習の実施時期は5月。

SGDに関する補足:アドバイザーの指導のもと、薬学入門関連テキストを参考に、各SGD単位で適切な目標を設定し実施します。

 \mathbb{IV}

) XI 実習科

薬学入門演習Ⅱ

Introductory Seminar in Pharmacy II

学 年 第1学年

科目分類 必修

前期・後期 後期

単 位

1

教授 **土屋明美**助教成井浩二

教授 渡辺 謹三

准教授 與那 正栄

学習目標 (GIO)

医療の担い手の一員である薬の専門家として、患者、同僚との信頼関係を確立できるように相手の心理・立場・身体的条件の基本的な知識を修得することは大切です。この演習では、人命に関わる最低限の応急処置法を習得し、また、高齢者や障がいを持つ方の不自由を疑似体験します。また介助の仕方を学習することにより、優しさ、思いやりの心を持って患者に関わることのできる共感的・受容的態度を身につける。

講師紹介

山尾 澄子 元日本赤十字社医療センター

星野芙美子 元日本赤十字社医療センター

模擬患者さん 東京薬科大学SP研究会 田島多恵子 社会福祉法人 にじの会

喜熨斗智也 国士舘大学大学院救急システム研究科

白川 透 国士舘大学スポーツ医科学科

御手洗征子、谷 光子ほか 東京医科大学八王子医療センター看護部

▋行動目標 (SBOs)

〈救急救命〉

1	緊急に必要な手当てができるように、正しい救急法の知識を習得する(知識・態度)。
2	標準的な救急救命法(人工呼吸法・心臓マッサージ・AED)を習得する(態度・技能)。
3	簡単な止血法や気管内の異物除去法を習得する(態度・技能)。
4	救急救命法について説明できる(知識・態度)。
5	医療人として救急救命法を習得することの必要性や問題点を、述べることができる(知識・態度)。

〈介助 I 〉

6	「障がい」に関する基本的知識を習得する(知識・態度)。
7	車イスに乗って移動し、その不自由さやどのような介助が必要かを理解する(知識・技能・態度)。
8	医療人として障がい者、高齢者に対する介助の必要性や、その実施に関する問題点を述べることができる(知識・技能・態度)。

〈介助Ⅱ〉

9	障がいおよび老化による機能低下について理解する(知識・態度)。
10	装具をつけて高齢者模擬体験をし、その不自由さやどのような介助が必要かを理解する(知識・技能・態度)。

〈スモールグループディスカッション (SGD)〉

11	演習体験と「やまいの体験」講義を基にしてSGDを行い、医療人としてのあるべき姿を見出す(知識・態度)。
12	闘病記を読み、患者の立場から必要とされる医療人としての態度を学ぶ(知識・態度)。
13	SGDのプロダクトのプレゼンテーションを行い、チームワークの重要性、他者に伝える技能を学ぶ。

X

授業内容

回数	担 当	内 容	対応 (SBOs)
1~3	東京消防庁・ 東京救急協会・與那・ 喜熨斗・白川	救急救命法(1)	1~5
4~6	與那・喜熨斗・白川	救急救命法(2)	1~5
7~12	與那·土屋·渡辺· 成井·山尾·星野· 田島·御手洗·谷	介助Ⅰ・介助Ⅱ	6 ~ 10
13~15	土屋・與那・ 渡辺・成井	SGD	11~13
16	土屋・渡辺・ 與那・成井	特別講議	1~13

授業で行っている工夫: 1) 薬学入門関連テキストをポートフォリオとして利用します。学習記録や討論記録などを一元的に保存して下さい。

- 2) AED やレサシアンを用いて救急救命法(心肺蘇生法)を習得します。緊急の事態に遭遇した場合に、積極的に人命救助が出来るようにしておいて下さい。
- 3) 闘病記を読みレポートにまとめます。闘病記レポートと模擬患者(SP)さんのやまいの体験 談に基づいてSGDを行い、医療人としての共感的・受容的な態度を身につけます。

モデル・コアカリ: A ヒューマニズムについて学ぶ (3) 信頼関係の確立を目指して(患者の気持ちに配慮する) キュラムとの関連

成績評価方法: 1) 形成的評価 a) 知識: 各授業の前後において講義を行ない、細やかにフィードバックする。

b) 技術:車イス・高齢者模擬体験グッズ・AEDを活用する。

c) 態度: 各授業を通して細やかにフィードバックする。

2) 総括的評価 a) 知識:出席・態度・レポートなどを総合的に評価する。

b) 技術:AED・心肺蘇生法や介助技能を習得する。

c) 態度: 演習すべてに出席し、レポートを提出することを合格条件とする。やむをえず欠席した場合は、欠席届を提出し、担当者の指示に従うこととする。

教 書:薬学入門関連テキスト(平成23年度版)

身につけよう応急手当て一普通救命講習テキストー東京救急協会(配布資料) 身につけよう応急手当て一AEDテキストー東京救急協会(配布資料)

参考書: 闘病記ライブラリー(情報センター)

オフィスアワー: 與那 正栄 いつでも可。

保健体育学研究室 体育館3階

土屋 明美 いつでも可。

メールで予約してください。 医療人間関係学研究室 研究2号館407

渡辺 謹三 要予約 一般用医薬品学教室 ドラッグラショナル (DR) 研究開発センター 3階 成井 浩二 要予約 一般用医薬品学教室 ドラッグラショナル (DR) 研究開発センター 3階

特 記 事 項:実施時期に関する補足:救急救命法と介助Ⅰ・介助Ⅱ・SGDの実施時期、日程は別に連絡する。

教員からの一言: 演習体験で感じること・考えることを自分のものとして、新しいものの見方や人間の多様な生き 方を受け入れて、医療人としての自覚・態度を身につけてください。

英語 (講読) English (Reading)

学年第1学年	科目分類	必 修	前期・後期通	年	単 位	2
准教授 大野	真 (8·11)	刲	常勤講師 満留	留 敦司(2	2 · 5)	
非常勤講師 川上	彰子 (7・10)	則	学期講師 首	藤理彩子 (9 · 12)	
非常勤講師 畑江	里美 (3·6)	킞	学期講師 神E	田 玲子(1 · 4)	

学習目標 (GIO)

英米人が実際に読んでいる書籍や雑誌を読解するために、科学や医療の英語を中心とした文章を学習し、それらの構文や文法を理解する。イントロダクションで様々な辞書の使い分け方と使用方法、精読と速読の相違点を理解した上で、具体的なテキストの読解を行う。精読と速読の訓練を通じて、構文と文法の理解、テープの聞き取り能力、文章の正確な発音、パラグラフの要旨把握能力、必須語彙を習得する。また、テキストの内容面(科学思想、医療の時事問題など)についても理解を深め、自らの意見を発表できるように指導する。

▋行動目標 (SBOs)

1	様々な辞書の使い分け方と使用方法を理解する。
2	精読と速読の相違点を理解する。
3	精読において、文章の構文と文法を正確に説明できる。
4	精読において、テープを聞いた後に、文章の要旨を説明できる。
5	精読において、文章を正確に発音できる。
6	速読において、各パラグラフの要旨を説明できる。
7	英検準 1 級程度に相応する語彙を習得する。
8	テキストの内容面(科学思想、医療の時事問題など)について理解する。
9	テキストの内容面(科学思想、医療の時事問題など)について自らの意見を発表できる。

■ 授業内容

回数	内 容	対応 (SBOs)
1	前期授業のイントロダクション	1, 2
2~12	前期テキストの講読	3~9
13	前期試験	3~9
14	後期授業のイントロダクション	1, 2
15~25	後期テキストの講読	3~9
26	後期試験	3~9

授業で行っている工夫: 医学・薬学的な話題を中心として、幅広い英語力を養えるように共通テキストを選定している。 速読と精読の両方を訓練する。

モデル・コアカリ: F(2) (薬学英語入門)

キュラムとの関連

成 績 評 価 方 法:1) 形成的評価 a) 知識:演習問題を繰り返し行う。

c) 態度: 出席、提出物、受講態度を評価する。なお、出席不良者に対しては定期試験受験停止の措置を講じることがあるので注意すること。

2) 総括的評価 a) 定期試験、出席点、提出物を総合的に評価する。

c) 態度:繰り返しの形成的評価で改善が認められれば合格とする。

教 科 書:別に指示する。

参考 書: リーダーズ英和辞典(松田編 研究社) **オフィスアワー**: 大野 真 いつでも可。但し、要予約。

非常勤講師 薬学事務課にて。薬学部事務にて要予約。

所属教室:大野 真 第2英語教室 研究2号館207号

英語(コミュニケーション)

必修

科目分類

English (Communication)

准 教 授 エリック スカイヤー (3・6・9・12)

前期・後期 通 年

単位 2

非常勤講師 **マイケル** ライリー (1・4)

非常勤講師 ドナ マッキニス (2・5・7・10) 非常勤講師 リチャード シュルツ (8・11)

准教授 大野真

第1学年

学習目標 (GIO)

年

The general objective of this course is for students to improve all four skills (reading, writing, speaking, and listening) and learn about health and the pharmaceutical sciences at the same time. Over the yearlong course, students will also learn the basics to express themselves more clearly both orally and in written form. Critical thinking skills will also be improved upon.

▋行動目標 (SBOs)

1	Students will learn proper pronunciation.
2	Students will learn vocabulary and to distinguish between sounds at the word level.
3	Students will learn vocabulary and to distinguish between sounds at the sentence level.
4	Students will learn how spoken English naturally sounds and is produced.
5	Students will practice listening for everyday conversation.
6	Students will practice asking and answering questions for every day conversation.
7	Students will be better able to comprehend long passages related to science and health.
8	Students will learn and improve their writing skills in English.
9	In regard to various themes, students will be asked to critically think and ask questions.

授業内容

回数	担当	内 容	対応 (SBOs)
1	クラス担当者	Self - intros	1, 2, 3, 5, 6
2	//	Introduction to four skills	1, 2, 3, 4, 5, 6, 7
3~10	//	Four skills and health and science	1, 2, 3, 4, 5, 6, 7
11	//	Writing skills review	8
12	//	Presentations and Q&A	9
13	//	Midterm Exam	
14	//	Four Skills Review	1, 2, 3, 4, 5, 6, 7
15~23	//	Four skills and health and science	1, 2, 3, 4, 5, 6, 7
24	//	Writing skills review	8
25	//	Presentations and Q&A	9
26	//	Final Exam	

授業で行っている工夫: All four of the professors are native-speakers with many years of experience teaching English to students in Japan. They will surely be able to help you improve your English whether it is for reading, writing, speaking, or listening. Never hesitate to ask for assistance with your English education needs!

成績評価方法: Class attendance、 participating/speaking in class、 completion of homework、 and preparation for discussion will be taken into consideration.

教 科 書: Eric M. Skier: 薬学英語入門、 Skier, et al、 東京科学同人
McInnis、Riley、and Shooltz: Healthtalk (2nd Edition)、 Bert McBean、 Macmillan
Languagehouse

参考書: Each student must have a good dictionary.

オフィスアワー: Eric M. Skier いつでも可。

非常勤講師 薬学事務課にて。ただし薬学事務課にて要予約。

所属教室: Eric M. Skier 第3英語教室 研究2号館5階

物理学 Physics

全年 第1学年 科目分類 必修 前期·後期 前期 単位 1

准教授 横島 智

学習目標 (GIO)

物理学における自然現象のとらえ方、考え方は、薬学を含め自然科学諸分野の基礎となるものであり、第2学年以降の専門科目を有効に学習するための基礎である。初めに、「運動と力(力学)」を典型例として、自然科学的な考察方法を理解・修得する。次に、薬学と関連の深い「熱と物質(熱学)」、「電気と磁気」などについて、基本となる法則を理解し、簡単な具体例の取り扱いを学習する。その際、ある程度の数式は補助手段として用いるが、あくまで考え方の理解・修得に力点を置く。電磁波としての光や波動などにも言及する。

行動目標 (SBOs)

•	
1	物理学の重要性を説明できる。
2	運動の法則について理解し、力、質量、加速度の関係について説明できる。
3	落下運動のモデル化を説明できる。
4	円運動、単振動を数式を用いて説明できる。
5	微小振動の持つ共通性を単振り子や連成振り子を例として説明できる。
6	運動量、仕事、エネルギーなどの量の定義を理解し、相互関係を説明できる。
7	運動量を用いて、衝突などの現象を定性的に説明できる。
8	保存則について説明できる。
9	熱と温度について巨視的に説明できる。
10	気体についてのボイル、シャルル、ボイル・シャルルの諸法則について説明できる。
11	気体の温度、圧力について微視的に説明できる。
12	熱力学第1法則について説明できる。
13	熱力学第2法則について説明できる。
14	熱拡散、濃度拡散などについて説明できる。
15	電荷間に働くクーロンの法則、および電場について説明できる。
16	電流と磁場の関係について説明できる。
17	マックスウェル方程式について説明できる。
18	光が電磁波であること、およびその性質について説明できる。
19	光などの波が引き起こす現象について説明できる。

回数	担 当	内 容	対応 (SBOs)
1	横島	自然科学における物理学の位置づけ	1
2	//	運動の3法則と落下運動	2、3
3	//	円運動、単振動、単振り子と連成振り子	4, 5
4	//	運動量とエネルギー	6、7、8

回数	担 当	内 容	対応 (SBOs)
5	//	熱と温度	9
6	//	気体の性質	10、11
7	//	熱力学第 1 法則	12
8	//	熱力学第2法則	13
9	//	拡散	14
10	//	電荷、クーロンの法則、電場	15
11	//	電流と磁場	16
12	//	マックスウェル方程式と電磁波	17、18
13	//	波動、光、干渉、回折	19

授業で行っている工夫: 簡単な実験が可能なものについてはデモおこない、そうでないものについてはプロジェクターな

どを使ったビジュアルな表現により、物理現象や法則を直感的かつ身近に感じられるようにする。

また、薬学と関係した内容を出来うる限り取り上げていく。

モデル・コアカリ: C1(1)、C1(2)、C1(3)、C1(4)、C3(1) に関連した基礎的な教育

キュラムとの関連

成 績 評 価 方 法: 1) 形成的評価 a):知識 小テストやレポート課題を出す。

2) 総括的評価 a):知識 定期試験に加えて出席を加味して決定する。

教 科 書:薬学のための物理学 (宇野正宏著 愛智出版)

また、適宜プリントを配る。

参考:はじめて学ぶ物理学(阿部龍蔵著 サイエンス社)

第4版 物理学基礎 (原康夫著 学術図書出版社)

オフィスアワー:電子メールであらかじめ予約をとること。

教員からの一言:物理はとかく敷居が高いと言われ、実際にそのような側面もありますが、学んだ内容ばかりでな

く、学ぼうとするプロセスからも多くのことを得ることができます。先入観をすてて取り組めば、

こんなことも薬学と関係しているのかと、新鮮な驚きがあると思います。

所 属 教 室:薬学教育推進センター 研究1号館1階1105

化学結合語

青柳

榮 (E·F、G·H)

Chemical Bonding

学 年 第1**学**年 科目分類 **必** 修 前期·後期 前期 単 位 1

学習目標 (GIO)

教 授

薬学を学ぶ上で必要な化学の基礎力を身につけるために、物質を構成する基本単位である原子および分子の性質を理解する。原子構造、分子構造、電子配置、電子密度および化学結合等に関する基本的知識を修得する。

湯浅 洋子 (A·B、C·D)

准教授

┃ 行動目標 (SBOs)

1	原子、分子、イオンの基本的構造について説明できる。
2	原子量、分子量を説明できる。
3	原子の電子配置について説明できる。
4	電子のスピンとパウリの排他律について説明できる。
5	周期表に基づいて原子の諸性質(イオン化エネルギー、電気陰性度など)を説明できる。
6	同素体、同位体について例をあげて説明できる。
7	原子軌道の概念、量子数の意味について概説できる。
8	波動方程式について概説できる。
9	不確定性原理について概説できる。
10	化学結合の成り立ちについて説明できる。
11	軌道の混成について説明できる。
12	分子軌道の基本概念を説明できる。
13	共役や共鳴の概念を説明できる。
14	化学結合(イオン結合、共有結合、配位結合など)について説明できる。
15	分子の極性および双極子モーメントについて概説できる。
16	代表的な結晶構造について概説できる。静電相互作用について例を上げて説明できる。
17	静電相互作用について例を上げて説明できる。ファンデルワールス力について例をあげて説明できる。
18	ファンデルワールス力について例をあげて説明できる。水素結合について例をあげて説明できる。
19	水素結合について例をあげて説明できる。分子の分極と双極子モーメントについて説明できる。
20	分子の分極と双極子モーメントについて説明できる。ルイス酸・塩基を定義することができる。
21	ルイス酸・塩基を定義することができる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	青柳、湯浅	元素の起源と原子の構成	1, 2, 4, 6, 7, 8, 9
2	//	物質の波動性と粒子性	1, 2, 4, 6, 7, 8, 9
3	//	周期表	1, 2, 4, 5
4	//	電子配置	3、4
5	//	元素の一般的性質	5、6
6	//	共有結合	10、11、12、14
7	//	共有結合と軌道(1)	10、11、12、14
8	//	共有結合と軌道 (2)	10、11、12、14
9	//	分子の立体構造と極性	15
10	//	結晶構造	16
11	//	イオン結合、金属結合	14
12	//	基礎無機反応	13、20、21
13	//	水溶液の性質	17、18、19

授業で行っている工夫: 化学物質の構造と物性を理解するために必要な基本項目を取捨選択し、高校化学の内容との関連性を考慮して講義を行うよう努めている。

モデル・コアカリ: Cl 物質の物理的性質(1)物質の構造

キュラムとの関連

成績評価方法:1) 形成的評価 a) 知識:演習問題を行う。

2)総括的評価 a)知識:出席、レポート、試験を総合的に評価する。

教 科 書:基本無機化学(荻野 博、飛田博実、岡崎雅明著 東京化学同人)

参考 書:はじめて学ぶ大学の無機化学(三吉克彦著 化学同人)

フレッシュマンのための化学結合論(西本吉助訳 化学同人)

オフィスアワー: 青柳 榮 いつでも可。研究2号館306 但し、要予約。

湯浅 洋子 いつでも可。教育2号館2階2209 但し、要予約。

所属教室:青柳 榮 機能性分子設計学教室

湯浅 洋子 薬学基礎実習教育センター

化学平衡論 Chemical Equilibrium

学年 第1学年 科目分類 必修 前期·後期前期 単位 1

教 授 楠 文代 (A·B、C·D)

教 授 **渋澤 庸一**(E·F、G·H)

講師 **小谷明**(A·B、C·D)

学習目標 (GIO)

化学平衡論は化学物質の性質、化学反応、化学組成などにおける量的関係を解析するための基礎理論である。特に、物質の定性、定量を扱う分析化学において不可欠の概念である。ここでは、分析化学に関係の深い種々の化学平衡、特に溶液内化学反応を通して、化学平衡の基礎概念を理解し、それらの量的な解析的取り扱いに習熟することを目標とする。この化学平衡の概念が、分析化学の基本であるばかりでなく、薬学分野における様々な反応、薬剤の溶解と吸収、生体における薬物動態などの理解に重要であることを会得する。

┃ 行動目標 (SBOs)

1	化学ポテンシャルについて説明できる。
2	活量と活量係数、電解質の活量係数の濃度依存性について説明できる。
3	イオン強度について説明できる。
4	化学平衡と自由エネルギーの関係を説明できる。
5	水溶液中の種々の反応の平衡定数を列挙できる。
6	酸・塩基平衛を説明できる。
7	溶液の pH を計算できる。
8	緩衝作用について具体例をあげて説明できる。
9	代表的な緩衝液の特徴とその調製法を説明できる。
10	化学物質のpHによる分子形、イオン形の変化を説明できる。
11	錯体・キレート生成平衡について説明できる。
12	沈澱平衡(溶解度と溶解度積)について説明できる。
13	酸化還元電位について説明できる。
14	酸化還元平衡について説明できる。
15	代表的な無機イオンの定性反応を説明できる。

回数	担 当	内 容	対応 (SBOs)
1	楠、小谷、渋澤	化学平衡論総論	
2	//	溶液の性質	1、2,3
3	//	溶液の性質と化学平衡	2、4、5
4	//	酸と塩基	6、7
5	//	酸塩基平衡	5、6、7
6	//	酸塩基平衡	6、7、10
7	//	pH緩衝作用と緩衝液	8, 9

回数	担 当	内 容	対応 (SBOs)
8	//	多塩基酸と両性電解質の電離	7、8、9、10
9	//	沈殿平衡	5、12、15
10	//	沈殿平衡	12
11	//	錯体生成反応	5、11、15
12	//	錯体・キレート生成平衡	11
13	//	酸化還元平衡	5、14、15
14	//	酸化還元電位と化学平衡	13

授業で行っている工夫: 楠 文代: 初回の授業で、授業内容や小テストの課題の範囲を明示した予定表を配布し、予習 小谷 明 と復習に役立てるようにしている。毎講義時間で習熟すべき点を、「本日のキーワー

ド」として明示して目標を明確にしている。毎講義時間の最初の5分間に小テストを行い、問題を解くことを通じて理解を深めるようにしている。WebClassによる課題や質問の提出を通じて、学生の理解が及ばぬ点などをモニターしながら講義の展開を図っている。

渋澤 庸一:毎回、講義の最初に前回の講義の復習を行い、次の講義につながるキーワードを示し、目標を明確にしている。講義で使用するスライドや講義に関連する練習問題をWebClassで公開しており、予習、復習、問題解決に役立つようにしている。

モデル・コアカリ: C2 化学物質の分析 (1) 化学平衡【酸と塩基】【各種の化学平衡】 キュラムとの関連 (2) 化学物質の検出と定量【定性試験】

成 績 評 価 方 法: 1) 形成的評価 a) 知識:講義のはじめに前回の講義に関する簡単な練習問題、小テストなどを行う。また、講義に関するレポートを提出させそれに基づき評価する。

b) 技能: 小テストの解答方法、レポートの書き方などで評価する。

c) 態度:毎回の出席状況、提出物の提出状況などで評価する。

2) 総括的評価 a) 知識: 定期試験の結果を評価する。

b) 技能:定期試験の正解の解答法を評価する。

c) 態度:レポートおよび毎回の講義の受講態度(小テスト、出欠など)を評価する。

教 科 書:薬学生のための分析化学 第3版(楠 文代他著 廣川書店)

(楠、小谷はさらにプリントも配布)

参考:第十六改正日本薬局方解説書(廣川書店)

演習を中心とした薬学生の分析化学 第4版(廣川書店)

CBT対策と演習 分析化学 第2版(廣川書店)

オフィスアワー:楠 文代 いつでも可。

小谷 明 いつでも可。

渋澤 庸一 いつでも可。

所 属 教 室:楠 文代 分析化学教室 研究2号館4階406

小谷 明 分析化学教室 研究2号館4階406

渋澤 庸一 薬物牛体分析学教室 研究2号館4階405

分子物理化学 Physical Chemistry I

 学年
 第1学年
 科目分類
 必修
 前期・後期後期
 後期
 単位
 1

 准教授
 湯浅
 洋子(A·B、C·D)
 講師
 青山
 洋史(E·F、G·H)

学習目標 (GIO)

物質の存在状態は分子間相互作用に依存します。分子間相互作用を理解するために、分子の双極子モーメントとその分子論的意味、ファンデルワールスの状態方程式、気体の分子運動とエネルギー、エネルギーの量子化とボルツマン分布などについて学習します。また、物質と電磁波との相互作用および分子の内部エネルギーとの関連についても学習します。

┃ 行動目標 (SBOs)

1	ファンデルワールスの状態方程式について説明できる。
2	気体の分子運動とエネルギーの関係について説明できる。
3	エネルギーの量子化とボルツマン分布について説明できる。
4	分子の分極と双極子モーメント、静電相互作用について説明できる。
5	ファンデルワールス力について例を挙げて説明できる。
6	双極子間相互作用について例を挙げて説明できる。
7	分散力について例を挙げて説明できる。
8	水素結合について例を挙げて説明できる。
9	電荷移動について例を挙げて説明できる。
10	電磁波の性質と物質との相互作用を説明できる。
11	分子の振動、回転、電子遷移について説明できる。
12	偏光および旋光性について説明できる。
13	核スピンとその核磁気共鳴について説明できる。
14	散乱と干渉について説明できる。
15	結晶構造と回析現象について説明できる。

回数	担 当	内 容	対応 (SBOs)
1	湯浅、青山	物質の存在状態と気体分子の運動エネルギーについて	1、2、3
2	//	分子の分極と双極子モーメントについて	4、6
3	//	ファンデルワールス力について	5, 6
4	//	双極子間相互作用、分散力について	7、8
5	//	水素結合について	8
6	//	電荷移動、疎水性相互作用について	5, 9
7	//	電磁波の性質とエネルギーについて	3、10、11
8	//	電磁波と物質との相互作用について	3, 10, 11
9	//	分子の振動、回転について	3, 11, 12

選択科

回数	担 当	内 容	対応 (SBOs)
10	//	分子の電子遷移について	3、11、12
11	//	偏光および旋光性について	10、12
12	//	核スピンとその核磁気共鳴について	10, 13
13	//	散乱および干渉と回析現象について	14、15

授業で行っている工夫: 1) それぞれの講義のはじめに、目標とするキーワードを示します。このキーワードが理解でき

るように講義に集中し、ノートを取って下さい。

2) それぞれの講義のおわりに、CBTと国家試験との関連を例示し、要点を明確にします。

モデル・コアカリ: Cl 物質の物理的性質 (1)物質の構造:分子間相互作用、原子·分子

キュラムとの関連

(2) 物質の状態 I:総論

成績評価方法:1) 形成的評価 a) 知識:演習問題を行う。

2) 総括的評価 a) 知識:出席、レポート、試験を総合的に評価する。出席不良者には受験停止をすることがある。

教 科 書:薬学領域の物理化学(渋谷 皓編集 横松 力、湯浅洋子他著 廣川書店)

参 **考 書**:物理化学要論 第2版(アトキンス著、千原秀昭·稲葉 章訳 東京化学同人)

化学・生命科学系のための物理化学

(Raymond Chang著、岩澤康裕·北川禎三·濱口宏夫訳 東京化学同人)

日本薬学会編 物理系薬学 I.物質の物理的性質(東京化学同人、スタンダード薬学シリーズ2)

オフィスアワー:湯浅 洋子 予約をとればいつでも可。 青山 洋史 予約をとればいつでも可。

所 属 教 室:湯浅 洋子 薬学基礎実習教育センター 教育2号館2階2209

青山 洋史 分子機能解析学研究教室 1号館303号室

分析化学 Analytical Chemistry

学年 第1学年 科目分類 必修 前期·後期後期 期 単位 1

 教 授 楠
 文代 (E · F、G · H)

 准教授 柳田 顕郎 (A · B、C · D)

試料中に存在する物質の種類および濃度を正確に知るために、代表的な医薬品、その他の化学物質の滴定を含む各種の定量分析法の基本的知識と技能を習得する。化学平衡論で身につけた知識を活用して、化学量論に基づいた化学分析法である各種の容量分析法を習得する。更に、日本薬局方収載医薬品の定量法に基づいて測定した定量値の取り扱いや、分析法のバリデーションなどの基本的知識を習得し、それらを応用する技術を身につける。

┃ 行動目標 (SBOs)

1	代表的な無機イオンの定性反応を説明できる。
2	日本薬局方収載の代表的な医薬品の確認試験、純度試験、定量法について、その内容を説明できる。
3	実験値を用いた計算および統計処理ができる。
4	医薬品分析法のバリデーションについて説明できる。
5	日本薬局方収載の容量分析法について列挙できる。
6	中和滴定の原理、操作法および応用例を説明できる。
7	非水滴定の原理、操作法および応用例を説明できる。
8	キレート滴定の原理、操作法および応用例を説明できる。
9	沈殿滴定の原理、操作法、および応用例を説明できる。
10	酸化還元滴定の原理、操作法および応用例を説明できる。

回数	担 当	内 容	対応 (SBOs)
1	楠、柳田	容量分析総論	1, 2, 5
2	//	1)酸塩基滴定 滴定曲線	6
3	//	酸塩基指示薬とその選択	6
4	//	多価の酸塩基、混合酸塩基	6
5	//	非水溶液における酸塩基滴定	6、7
6	//	2) 沈殿滴定 沈殿の生成	9
7	//	滴定曲線と指示薬、沈殿滴定各論	9
8	//	3) 錯生成滴定 金属錯体の生成	8
9	//	単座配位子による錯生成滴定	8
10	//	金属指示薬、キレート滴定各論	8
11	//	4)酸化還元滴定 酸化還元電位	10
12	//	滴定曲線、酸化還元指示薬	10
13	//	5) 医薬品分析法のバリデーション	3、4

1

授業で行っている工夫: 楠 : 初回の授業で、授業内容や小テストの課題の範囲を明示した予定表を配布し、予習と復習に役立てるようにしている。毎講義時間で習熟すべき点を、「本日のキーワード」として明示して目標を明確にしている。毎講義時間の最初の5分間に小テストを行い、問題を解くことを通じて理解を深めるようにしている。デモ実験を行い、反応や呈色変化を直に観察させることで、滴定反応などの理解が進むように工夫している。小さいメモ用紙に意見を書かせて、学生の理解が及ばぬ点などをモニターしながら講義の展開を図っている。

柳田:講義のねらいや予定、他教科との関連について、講義初回に概説する.講義は毎回、板書とスクリーン投影を併用して行う.容量分析の原理や仕組みを視覚的に理解させながら、計算演習(主に板書)をくり返すことで学習効果を高めている.スクリーンで解説する説明内容はPDF資料にして前週までにWebClass に掲載し、授業の予習や復習ができるようにしている。毎回、オリジナル演習問題を出題し、講義時間内に各自解答させ、解説を加える時間を設けている。

モデル・コアカリ: C2 化学物質の分析 (1) 化学平衡、(2) 化学物質の検出と定量 キュラムとの関連

成績評価方法:1)形成的評価 a)知識:期間中を通じて演習問題や小テストを繰り返し行う。

c)態度:授業への出席と課題などの提出を適宜フィードバックする。

2) 総括的評価 a) 知識: 定期試験の結果に、演習問題や小テストおよび受講態度(出欠など) を加味して評価する。

c) 態度:出席良好者を合とし、出席不良者に対しては受験停止の措置を講ずる ことがある。

教 書:薬学生のための分析化学 第3版 (楠文代/渋澤庸ー編集 廣川書店) 演習を中心とした薬学生の分析化学 第4版 (嶋田健次編集 廣川書店)CBT対策と演習 分析化学 第2版 (薬学教育研究会編 廣川書店)

参考:第十五改正日本薬局方解説書(廣川書店)

オフィスアワー: 楠 文代 いつでも可。

柳田 顕郎 いつでも可。

所属教室:楠文代、分析化学教室研究2号館4階406

柳田 顕郎 薬物生体分析学教室 研究2号館4階405

無機化学

Inorganic Chemistry

必修 学 年 第1学年 科目分類 前期・後期 後 期 単 位 1 准教授 袴田 秀樹 (E·F、G·H) 古石 裕治 (A·B、C·D) 講 師

学習目標 (GIO)

代表的な元素(典型元素、遷移元素)とその化合物及び日本薬局方収載の無機医薬品の性質を理解するために、名称、構造、性状、製法などに関する知識を修得する。さらに、代表的な錯体の性質を理解するために、錯体の名称、立体構造、配位子、キレート効果、安定度定数などに関する知識を習得する。

┃ 行動目標 (SBOs)

1	代表的な典型元素を列挙し、その特徴を説明できる。
2	代表的な無機医薬品を列挙できる。
3	窒素酸化物の名称、構造、性質を列挙できる。
4	一酸化窒素の電子配置と性質を説明できる。
5	イオウ、リン、ハロゲンの酸化物、オキソ化合物の名称、構造、性質を列挙できる。
6	活性酸素の構造、電子配置と性質を説明できる。
7	代表的な遷移元素を列挙し、その特徴を説明できる。
8	代表的な錯体の名称、立体構造、基本的性質を説明できる。
9	配位結合を説明できる。
10	代表的なドナー原子、配位基、キレート試薬を列挙できる。
11	錯体の安定度定数について説明できる。
12	錯体の安定性に与える配位子の構造的要素(キレート効果)について説明できる。
13	錯体の安定性について説明できる。
14	医薬品として用いられる代表的な錯体を列挙できる。
15	生体内に存在する代表的な金属イオンおよび錯体の機能について説明できる。

回数	担 当	内 容	対応 (SBOs)
1	袴田、古石	第1族元素の単体、化合物	1, 2
2	//	第2族元素の単体、化合物	1, 2
3	//	第13・14族元素の単体、化合物	1, 2
4	//	第15族元素の単体、化合物	1, 2, 3, 4, 5
5	//	第16族元素の単体、化合物	1, 2, 5, 6
6	//	第17・18族元素の単体、化合物	1、2、5、6
7	//	第一遷移系列元素の単体、化合物	2、7
8	//	第二遷移系列元素の単体、化合物	2, 7
9	//	第三遷移系列元素及びf-ブロック元素の単体、化合物	2、7

選択科

回数	担 当	内 容	対応 (SBOs)
10	//	錯体の構造、配位子、命名	8, 9
11	//	錯体の結合理論、異性現象、色	8, 9, 10
12	//	錯体の反応(生成定数、キレート効果、置換反応)	11, 12, 13
13	//	医薬品や身のまわりにある錯体	12、13、14、15

授業で行っている工夫:【袴田】授業の初日に修得すべき内容を課題として提示し、目標を明確に設定している。授業は基本的に板書とし、集中できるように努めている。初日に提示した課題を、複数回に分けてレポートとして提出してもらい、問題解決能力の向上を図っている。

【古石】毎回、授業内容についてのプリントを配布している。プリントには、空欄に重要事項や説明を書き込めるように工夫しており、講義に集中できるように配慮している。また、小テストとして演習問題を複数回行い、問題解決能力の向上を図っている。

モデル・コアカリ: C5 化学物質の性質と反応 (1) 化学物質の基本的性質

キュラムとの関連

成績評価方法:1)形成的評価 a)知識:講義に関するレポートや小テストに基づき評価する。

b) 技能: レポートの書き方や小テストなどで評価する。

c)態度:毎回の出席状況、提出物の提出状況などで評価する。

2) 総括的評価 a) 知識: 定期試験の結果、レポートなどを総合的に評価する。

b) 技能:定期試験の正解の解答法を評価する。

c) 態度:レポートおよび毎回の講義の受講態度(出欠など)を評価する。

教 科 書:無機化合物・錯体 一生物無機化学の基礎 第2版一(梶 英輔編 廣川書店)

参考書:基本無機化学(荻野博、飛田博実、岡崎雅明著東京化学同人)

リー 無機化学 (J. D. Lee著 浜口 博、菅野 等訳 東京化学同人)

オフィスアワー:いつでも可。但し、要予約。

所属教室: 袴田 秀樹 分析化学教室 研究2号館4階406

古石 裕治 機能性分子設計学教室 研究2号館3階306

有機化学 I Organic Chemistry I

学 年	第1学年	科目分類	必 修	前期・後期	前期	単 位	1
准教授	土橋 保夫 (A	· B)	7	生教授 松木	本 隆司 (C·[))	
准教授	宮岡 宏明 (E	· F)	}	生教授 森	勉(G·	- 1)	

学習目標 (GIO)

有機化学の基本と仕組みを理解するために、有機化合物の構造とその成り立ち、官能基と物性、化学結合の性質に関する基本的知識を修得する。

▋行動目標 (SBOs)

1	有機化合物の結合の概観を説明できる。
2	薬学領域で用いられる代表的な化合物の官能基を列挙し、分類できる。
3	個々の官能基を有する化合物の簡単な性質を説明できる。
4	個々の官能基の簡単な反応を説明できる。
5	有機反応の種類(置換、付加、脱離)と特徴を概説できる。
6	基本的な化合物をルイス構造式で書くことができる。
7	原子と化学結合の関係を概説できる。
8	物質の構成単位である原子を概説できる。
9	原子の電子配置を説明できる。
10	原子軌道と混成軌道の関連を説明できる。
11	混成軌道の種類と特性を説明できる。
12	極性共有結合と電気陰性度の関連を説明できる。
13	共役や共鳴の概念を説明できる。
14	有機化合物の性質に及ぼす共鳴の影響について説明できる。
15	酸と塩基に関して概説することができる。
16	ルイス酸・ルイス塩基を定義することができる。
17	有機反応における結合の開裂と生成の様式について概説できる。
18	有機反応を、電子の動きを示す矢印を用いて説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	土橋(保)、松本、 宮岡、森川(勉)	有機化合物の構成と変化、基本的な有機化合物の官能基によ る分類	1, 2
2	//	基本的な有機化合物の官能基と簡単な性質	2, 3
3	//	基本的な有機化合物の官能基の簡単な反応	4
4	//	有機反応における結合の開裂と生成	5
5	//	基本的な化合物のルイス構造式、化学結合は電子が作る:原子の構造、電子の部屋	6、7、8、9
6	//	電子の部屋と混成軌道の形成	9、10
7	//	混成軌道の形と性質	11
8	//	混成軌道と有機化合物の性質	11
9	//	極性共有結合と電気陰性度、形式電荷と共鳴	12、13、14
10	//	酸と塩基	15
11	//	ルイス酸とルイス塩基	15、16
12	//	電子を共有する部屋をうずめる	17、18
13	//	有機反応における結合の開裂と生成	17、18

授業で行っている工夫: あらかじめ目標とするキーワードを提示し、目標を明確にしている。講義の進捗に合わせて、小テスト等による演習、解説を行い、理解を深めるよう努めている。

モデル・コアカリ: C1 物質の物理的性質 (1)物質の構造

キュラムとの関連 C4 化学物質と性質と反応 (1) 化学物質の基本的性質 (2) 有機化合物の骨格

成績評価方法:1) 形成的評価 a) 知識:演習、小テスト等を行う。

c) 態度:受講状況(出欠等)を記録する。

2) 総括的評価 a) 知識: 定期試験

c) 態度: 受講態度(出欠等)を総合的に評価する。出席不良者に対しては、定

期試験について受験停止の措置を講ずることがある。

教 科 書:マクマリー有機化学 第7版(上、中、下)(J. McMurry著 伊藤ら訳 東京化学同人)

参考書:よくわかる有機化学の基本と仕組み(木原伸浩・著・秀和システム)

困ったときの有機化学(D. R.クライン 著 竹内敬人、山口和夫 訳 化学同人)電子の動きでみる有機反応のしくみ(奥山 格、杉村高志 著 東京化学同人)

有機反応機構(P. Sykes 著 久保田尚志 訳 東京化学同人)

オフィスアワー:いつでも可。 但し、要予約。

所属教室: 土橋 保夫 薬学基礎実習教育センター 教育1号館2階1205

松本 隆司 有機合成化学教室研究2号館3階304宮岡 宏明 生物分子有機化学教室研究2号館2階205森川 勉 薬学教育推進センター教育1号館1階1105

有機化学演習 I

Seminar in Organic Chemistry I

学 年	第1	学年	科目分類	必修		前期・後期	前	期	単	位	1	
准教授	土橋	保夫 (A	· B)	准教授	松本	隆司 (C·	D)					
准教授	宮岡	宏明 (E	· F)	准教授	森川	勉(G·	H)					

学習目標 (GIO)

基本的な脂肪族炭化水素の慣用名およびIUPACの規則に従った命名法を修得する。さらに脂肪族炭化水素の構造、物性を理解するために、立体配座と安定性に関する基本的知識を修得する。

▍行動目標 (SBOs)

1	代表的アルカンを慣用名で記述できる。
2	アルカンをIUPACの規則に従って命名することができる。
3	アルキル基をIUPACの規則に従って命名することができる。
4	シクロアルカンをIUPACの規則に従って命名することができる。
5	シクロアルカンの立体異性体(シス、トランス異性体)について説明できる。
6	アルカンの構造異性体を図示し、その数を示すことができる。
7	アルカンおよびシクロアルカンの基本的な物性について説明できる。
8	Newman 投影式を用いて有機化合物の構造を書くことができる。
9	エタンおよびブタンの立体配座と安定性について説明できる。
10	シクロアルカンの環の歪を決定する要因について説明できる。
11	シクロヘキサンのいす形配座と舟形配座を図示できる。
12	シクロヘキサンのいす形配座における水素の結合方向(アキシアル、エクアトリアル)を図示できる。
13	置換シクロヘキサンの安定な立体配座を決定する要因について説明できる。

回数	担 当	内 容	対応 (SBOs)
1	土橋(保)、松本、 宮岡、森川(勉)	アルカンの命名法	1, 2
2	//	アルカンの命名法	2
3	//	複雑なアルキル基を有するアルカンの命名法	2, 3
4	//	シクロアルカンの命名法、シクロアルカンのシスートランス 異性体の構造と命名	4, 5
5	//	アルカンの構造異性体、アルカンおよびシクロアルカンの基 本的な物性	6、7
6	//	アルカンの立体配座:エタンの立体配座	8, 9
7	//	アルカンの立体配座:ブタン、長鎖アルカンの立体配座	8, 9
8	//	シクロアルカンの立体配座と環の歪	7、10
9	//	シクロヘキサンの立体配座:配座の変化、環反転、アキシア ル結合とエクアトリアル結合	11, 12

選択科

T X 実習科目

回数	担 当	内 容	対応 (SBOs)
10	//	ー置換シクロヘキサンの立体配座:立体の歪 1、3 – ジアキ シアル相互作用	12、13
11	//	二置換シクロヘキサンの配座解析:立体の歪	12、13
12	//	多環状分子の立体配座	12、13
13	//	まとめ	1 ~ 13

授業で行っている工夫: あらかじめ目標とするキーワードを提示し、目標を明確にしている。講義の進捗に合わせて、小

テスト等による演習、解説を行い、理解を深めるよう努めている。

モデル・コアカリ: C4 化学物質と性質と反応 (1) 化学物質の基本的性質 (2) 有機化合物の骨格

キュラムとの関連

成績評価方法: 1) 形成的評価 a) 知識: 演習、小テスト等を行う。

c) 態度 : 受講状況 (出欠等) を記録する。

2) 総括的評価 a) 知識 : 定期試験

c) 態度: 受講態度(出欠等)を総合的に評価する。出席不良者に対しては、

定期試験について受験停止の措置を講ずることがある。

教 科 書:マクマリー有機化学 第7版(上、中、下)(J. McMurry著 伊藤ら訳 東京化学同人)

参考書:教材:分子構造模型

よくわかる有機化学の基本と仕組み(木原伸浩 著 秀和システム)

最新全有機化合物名称のつけ方(寥 春栄 著 三共出版)

困ったときの有機化学(D.R. クライン 著 竹内敬人、山口和夫 訳 化学同人)電子の動きでみる有機反応のしくみ (奥山 格、杉村高志 著 東京化学同人)

有機反応機構 (P. Sykes 著 久保田尚志 訳 東京化学同人)

オフィスアワー:いつでも可。 但し、要予約。

所属教室: 土橋 保夫 薬学基礎実習教育センター 教育1号館2階1205

松本隆司有機合成化学教室研究2号館3階304宮岡宏明生物分子有機化学教室研究2号館2階205森川勉薬学教育推進センター教育1号館1階1105

XI 実習科目

有機化学Ⅱ Organic Chemistry II

学 年	第1	学年	科目分類	必修		前期・後期	後	期	単	位	1	
准教授	土橋	保夫 (A	· B)	准教授	松本	隆司 (C·	D)					
准教授	宮岡	宏明(E	· F)	准教授	森川	勉(G·	H)					

学習目標 (GIO)

不飽和炭化水素の命名法を修得し、それぞれの基本構造、物理的性質、合成法の概略、反応に関する基本的知識を修得する。

┃ 行動目標 (SBOs)

1	アルケンの構造と性質を説明できる。
2	代表的アルケンを慣用名で、およびアルケンをIUPACの規則に従って命名することができる。
3	Cahn — Ingold — Prelog則(順位則)を用いてアルケンの立体異性体(E、Z)を決定できる。
4	アルケンの構造と安定性を説明できる。
5	アルケンへのハロゲン化水素の求電子付加反応の位置選択性(Markovnikov則)について説明できる。
6	カルボカチオンの級数と安定性の関係を説明できる。
7	反応の進行を、エネルギー図を用いて説明できる。
8	有機反応を、電子の動きを示す矢印を用いて説明できる。
9	アルケンの代表的な合成法について概説できる。
10	アルケンへの臭素の付加反応の機構を図示し、反応の立体特異性(アンチ付加)を説明できる。
11	アルケンへの代表的なアンチ型付加反応を列挙し、反応機構を説明できる。
12	アルケンへの代表的なシン型付加反応を列挙し、反応機構を説明できる。
13	アルケンの酸化的開裂反応を列挙し、構造解析への応用について説明できる。
14	炭素原子を含む反応中間体 (カルボカチオン、カルバニオン、ラジカル、カルベン) の横造と性質を説明できる。
15	アルキンの構造および製法を概説できる。
16	アルキンをIUPACの規則に従って命名することができる。
17	アルキンの代表的な反応を列挙し説明できる。
18	アルキンの酸性度、アセチリドアニオンの生成を説明できる。
19	アセチリドアニオンのアルキル化について説明できる。
20	逆合成を用いて簡単な標的物質の合成ルートを考案できる。

IX

授業内容

回数	担当	内 容	対応 (SBOs)
1	土橋(保)、松本、 宮岡、森川(勉)	アルケン:構造と性質:不飽和度、アルケンの命名	1, 2
2	//	アルケンの命名E体、 Z体、アルケンの構造と安定性	3、4
3	//	アルケンへのハロゲン化水素の求電子付加反応、反応の進行 とエネルギー	5、6、7
4	//	カルボカチオンの転位、有機反応と電子の動き	6, 8
5	//	アルケンの合成法、アルケンへの臭素の付加反応 立体特異性(アンチ付加)	9、10
6	//	アルケンへの代表的なアンチ型付加反応と反応機構	11
7	//	アルケンへの代表的なシン型付加反応と反応機構	12
8	//	アルケンの酸化的開裂反応と構造解析への応用、炭素原子を 含む反応中間体の横造と性質	13、14
9	//	アルキンの構造および製法、アルキンの命名	15、16
10	//	アルキンの反応	17
11	//	アルキンの反応	17
12	//	アルキンの酸性度、アセチリドアニオンの生成、アセチリド アニオンのアルキル化	18、19
13	//	逆合成を用いた簡単な標的物質の合成ルートの設計	20

授業で行っている工夫: あらかじめ目標とするキーワードを提示し、目標を明確にしている。講義の進捗に合わせて、小テスト等による演習、解説を行い、理解を深めるよう努めている。

モデル・コアカリ: C4 化学物質と性質と反応 (1) 化学物質の基本的性質(2) 有機化合物の骨格

キュラムとの関連

成績評価方法: 1) 形成的評価

a) 知識:演習、小テスト等を行う。

c) 態度:受講状況(出欠等)を記録する。

2) 総括的評価

a) 知識: 定期試験

c) 態度:受講態度(出欠等)を総合的に評価する。出席不良者に対しては、

定期試験について受験停止の措置を講ずることがある。

教 科 書:マクマリー有機化学 第7版(上、中、下)(J. McMurry著 伊藤ら訳 東京化学同人)

参考書:よくわかる有機化学の基本と仕組み(木原伸浩・著・秀和システム)

困ったときの有機化学(D.R. クライン 著 竹内敬人、山口和夫 訳 化学同人)電子の動きでみる有機反応のしくみ(奥山 格、杉村高志 著 東京化学同人)

有機反応機構(P. Sykes 著 久保田尚志 訳 東京化学同人)

オフィスアワー:いつでも可。 但し、要予約。

所属教室:土橋保夫薬学基礎実習教育センター教育1号館2階1205

松本 隆司 有機合成化学教室研究2号館3階304宮岡 宏明 生物分子有機化学教室研究2号館2階205森川 勉 薬学教育推進センター教育1号館1階1105

有機化学演習Ⅱ

Seminar in Organic Chemistry II

学 年	第1学年	科目分類	必 修	前期・後期	後期	単 位	1
准教授	土橋 保夫 (A	· B)		准教授 松	本 隆司 (C・	D)	
准教授	宮岡 宏明(E	· F)		准教授 森	川 勉(G·	H)	

学習目標 (GIO)

有機化合物の立体構造が物性、反応性、ひいては薬効にも影響を与えることを理解するために、 基本的知識を修得する。さらに、有機ハロゲン化合物について、構造、性質、製法、反応および 立体化学との関連につき基本的知識を修得する。

行動目標 (SBOs)

1	構造異性体と立体異性体について説明できる。
2	キラリティーと光学活性を概説できる。
3	比旋光度と右旋性、左旋性を説明できる。
4	エナンチオマーについて説明できる。
5	絶対配置の表示法を説明できる。
6	旋光度と絶対配置の関係を説明できる。
7	Fischer投影式を用いて有機化合物の構造を書くことができる。
8	ジアステレオマーについて説明できる。
9	ラセミ体とメソ化合物について説明できる。
10	立体異性体の物理的性質を説明できる。
11	アルケンへの求電子付加反応と立体化学の関連を説明できる。
12	炭素以外の原子におけるキラリティーを概説できる。
13	有機ハロゲン化合物の代表的な合成法について説明できる。
14	有機ハロゲン化合物の代表的な性質と反応を列挙し、説明できる。
15	求核置換反応(SN1 およびSN2反応)の機構について、立体化学を含めて説明できる。
16	ハロゲン化アルキルの脱ハロゲン化水素の機構を図示し、反応の位置選択性―Zaitsev則―を説明できる。
17	ハロゲン化アルキルの脱ハロゲン化水素の機構(E2、E1)を図示し、反応の立体化学と位置選択性の関係を説明できる。

回数	担 当	内 容	対応 (SBOs)
1	土橋(保)、松本、 宮岡、森川(勉)	構造異性体と立体異性体、鏡像異性体と四面体炭素	1
2	//	キラリティーと光学活性、比旋光度、右旋性、左旋性、エナ ンチオマーと光学活性	2、3、4
3	//	絶対配置の表示法、Fischer投影式	5, 6, 7
4	//	ジアステレオマー、ラセミ体、メソ化合物、立体異性体の物 理的性質	8, 9, 10
5	//	アルケンへの求電子付加反応と立体化学	11

X

回数	担 当	内 容	対応 (SBOs)
6	//	キラルなアルケンへの付加:ジアステレオマーの生成	8、11
7	//	炭素以外の原子におけるキラリティー、まとめ	12
8	//	ハロゲン化アルキル:構造、性質、合成、ラジカルハロゲン 化	13、14
9	//	ハロゲン化アルキル:Grignard試薬、有機金属カップリング 反応	14
10	//	ハロゲン化アルキルの求核置換反応:SN2反応の機構と立体 化学	15
11	//	ハロゲン化アルキルの求核置換反応:SN1 反応の機構と立体 化学	15
12	//	ハロゲン化アルキルの脱ハロゲン化水素の機構:反応の位置 選択性-Zaitsev則、脱離反応E2	16
13	//	ハロゲン化アルキルの脱離反応:E2、E1、ハロゲン化アルキルのまとめ	13~17

授業で行っている工夫: あらかじめ目標とするキーワードを提示し、目標を明確にしている。講義の進捗に合わせて、小

テスト等による演習、解説を行い、理解を深めるよう努めている。

モデル・コアカリ: C4 化学物質と性質と反応 (1) 化学物質の基本的性質 (2) 有機化合物の骨格(3) 官能基キュラムとの関連

成績評価方法:]) 形成的評価

a)知識:演習、小テスト等を行う。

c) 態度:受講状況(出欠等)を記録する。

2) 総括的評価 a) 知識: 定期試験

c) 態度:受講態度(出欠等)を総合的に評価する。出席不良者に対しては、 定 期試験について受験停止の措置を講ずることがある。

教 科 書:マクマリー有機化学 第7版(上、中、下)(J. McMurry著 伊藤ら訳 東京化学同人)

参考: 教材: 分子構造模型

よくわかる有機化学の基本と仕組み(木原伸浩 著 秀和システム)

最新全有機化合物名称のつけ方(寥 春栄 著 三共出版)

困ったときの有機化学(D. R.クライン 著 竹内敬人、山口和夫 訳 化学同人)電子の動きでみる有機反応のしくみ(奥山 格、杉村高志 著 東京化学同人)

有機反応機構(P. Sykes 著 久保田尚志 訳 東京化学同人)

オフィスアワー:いつでも可。 但し、要予約。

所属教室: 土橋 保夫 薬学基礎実習教育センター 教育1号館2階1205

松本 隆司 有機合成化学教室研究2号館3階304宮岡 宏明 生物分子有機化学教室研究2号館2階205森川 勉 薬学教育推進センター教育1号館1階1105

細胞生物学 Cell Biology

学 年	第1学年	科目分類 必	修	前期・後期	前 期	単 位	1
教 授	野水 基義	病態生化学教室(A	A·B、C	\cdot D、 $E \cdot F$	G · H)		
准教授	吉川大和	病態生化学教室(A	$A \cdot B \cdot C$	\cdot D、 $E \cdot F$	(G · H)		
助教	保住建太郎	病態生化学教室(A	$A \cdot B \cdot C$	\cdot D、 $E \cdot F$	(G · H)		
助教	片桐 文彦	病態生化学教室(A	$A \cdot B \cdot C$	\cdot D、 $\mathbf{E} \cdot \mathbf{F}$	(G · H)		

学習目標 (GIO)

多細胞生物の成り立ちを細胞レベルで理解するために、細胞の構造と機能および組織構築に関する基本的知識を修得する。さらに、細胞を構成する基本分子としてのタンパク質、糖質および脂質について、それらの分子構造および性状について基本的知識を習得する。

┃ 行動目標 (SBOs)

-				
1	細胞の基本構造について説明できる。			
2	アミノ酸を列挙し、その構造に基づいて性質を説明できる。			
3	アミノ酸分子中の炭素および窒素の代謝について説明できる。			
4	タンパク質の主要な機能を列挙できる。			
5	タンパク質の一次、二次、三次、四次構造を説明できる。			
6	タンパク質の機能発現に必要な翻訳後修飾について説明できる。			
7	グルコースの構造、性質、役割を説明できる。			
8	グルコース以外の代表的な単糖、および二糖の種類、構造、性質、役割を説明できる。代表的な多糖の構造 と役割を説明できる。			
9	DNAの構造について説明できる。			
10	RNAの構造について説明できる。			
11	脂質を分類し、構造の特徴と役割を説明できる。			
12	細胞内小器官(核、ミトコンドリア、小胞体、リソソーム、ゴルジ体、ペルオキシソームなど)の構造と機能を説明できる。			
13	細胞骨格を形成するタンパク質の種類と役割について概説できる。			
14	物質の輸送を担うタンパク質の構造と機能を概説できる。			
15	細胞内外の物質や情報の授受に必要なタンパク質(受容体、チャネルなど)の構造と機能を概説できる。細 胞膜の構造と性質について説明できる。			
16	細胞膜の構造と性質について説明できる。細胞膜を構成する代表的な生体分子を列挙し、その機能を説明できる。			
17	細胞膜を構成する代表的な生体分子を列挙し、その機能を説明できる。			
18	細胞膜を介した物質移動について説明できる。			
19	細胞内情報伝達に関与するセカンドメッセンジャーおよびカルシウムイオンなどを、具体例を挙げて説明で きる。			
20	細胞膜受容体からGタンパク系を介して細胞内へ情報を伝達する主な経路について概説できる。			
21	細胞膜受容体タンパク質などのリン酸化を介して情報を伝達する主な経路について概説できる。			
22	代表的な細胞内(核内)受容体の具体例を挙げて説明できる。			
23	細胞集合による組織構築について説明できる。			
24	臓器、組織を構成する代表的な細胞の種類を列挙し、形態的および機能的特徴を説明できる。			
25	細胞間の接着構造、主な細胞接着分子の種類と特徴を説明できる。			
26	主な細胞外マトリックス分子の種類、分布、性質を説明できる。			

授業内容

回数	担 当	内 容	対応 (SBOs)
1	野水	はじめに、講義の到達目標、細胞の基本構造	1
2	//	生体構成物質(1)	2、3、4、5、6
3	//	生体構成物質(2)	7、8、9、10、11
4	//	細胞内小器官の構造と性質(1)	12
5	//	細胞内小器官の構造と性質 (2)	12、13
6	片桐	細胞膜の構造、性質と細胞膜を介した物質輸送	14、15、16、17、 18
7	保住	細胞間の情報伝達	19、20、21、22
8	吉川	組織の構築	23
9	//	組織の形態と細胞の種類(1)	24
10	//	組織の形態と細胞の種類 (2)	24
11	//	細胞間結合	25
12	//	細胞外マトリックス	26
13	//	小テストと授業のまとめ	1 ~ 26

授業で行っている工夫: 1.1 年生前期の「生物学」および「細胞生物学」、1 年生後期の「生化学 I 」および「生化学演習」、2年生の「生化学 II 」および「生化学 II」、さらに3年生の「バイオ医薬品とゲノム情報」を生物系の関連科目、すなわち基礎から応用までステップアップする講義と捉え、一貫性を重視して講義の理解度を上げることを工夫している。一方、限られた講義時間を効率よく利用するために講義の重複部分についても必要・不要等の調整をおこなっている。

- 2.当該講義課目履修後にも継続して講義に関する理解度チェック・復習ができるようにWebクラスを開設している。
- 3. 本講義は生物学導入教育の一環として行うもので、最後の時間に小テストの解説と授業のまとめを行い、重要項目の再確認をする。

モデル・コアカリ: C8 生命体の成り立ち(2)生命体の基本単位としての細胞

- キュラムとの関連 C9 生命をミクロに理解する(1)細胞を構成する分子、(2)生命情報を担う遺伝子、(3)生命活動を担うタンパク質、(5)生理活性分子とシグナル分子
- 成 績 評 価 方 法: 定期試験の結果に小テスト、出席を加味して総合評価する。但し、出席不良者に対しては受験停止の措置を講ずることがある。
 - 1) 形成的評価 a 知識; Web Classに提示した演習問題を繰り返し行う。
 - 2) 総括的評価 a 知識;定期試験、出席点、提出物を総合的に評価する。

教 科 書:細胞生物学ノート

薬学領域の生化学(伊東、藤木編 廣川書店)

新しい機能形態学-ヒトの成り立ちとそのはたらき- (小林、馬場、平井編 廣川書店)

参考書:細胞の分子生物学(中村桂子ら監訳ニュートンプレス)

生命科学(東京大学教養学部理工系生命科学教科書編集委員会 羊土社)

オフィスアワー: 担当教官 いつでも可。ただし、要予約。

所属教室:野水、吉川、保住、片桐病態生化学教室(研究2号館5階508号)

機能形態学 I

Human Anatomy and Physiology I

期

単 位

1

前期・後期前 年 第1学年 科目分類 必 修 広子 (A·B、C·D、E·F、G·H) 授 馬場 教 准教授 山口 宜秀(A·B、C·D、E·F、G·H) 師 林 明子(A·B、C·D、E·F、G·H)

学習目標 (GIO)

ヒトの成り立ちを個体、器官、細胞レベルで理解し、ホメオスタシス(恒常性)の維持機構を理 解するために、機能形態学Ⅰ(1年前期)、Ⅱ(1年後期)、Ⅲ(2年前期)によって生命体の構 造とダイナミックな機能調節機構に関する基本的知識を修得する。

┃ 行動目標 (SBOs)

1	ヒトの身体を構成する各臓器の役割分担について概説できる。
2	ホメオスタシスについて概説できる。
3	ヒトの身体を構成する臓器の名称、形態および体内での位置を説明できる。
4	ヒトにおける主な骨と関節の名称を挙げ、位置を示すことができる。
5	ヒトにおける主な骨格筋の名称を挙げ、位置を示すことができる。
6	細胞膜を介した物質輸送について説明できる。
7	細胞の電気的性質を説明できる。
8	細胞間コミュニケーションについて説明できる。
9	心臓、血管系について機能と構造を関連づけて説明できる。
10	心電図を理解できる。
11	血圧の調節機構を説明できる。
12	リンパ系について機能と構造を関連づけて説明できる。
13	胃、小腸、大腸などの消化管について機能と構造を関連づけて説明できる。
14	消化、吸収における神経の役割について説明できる。
15	消化、吸収における消化管ホルモンの役割について説明できる。
16	肝臓、膵臓、胆嚢について機能と構造を関連づけて説明できる。
17	ヒトの成り立ちとその働きを総合的に関連づけ、ホメオスタシスの維持機構を説明できる。

回数	担 当	内 容	対応 (SBOs)
1	馬場	機能形態学について -身体の構造とホメオスタシス-	1, 2
2	ЩП	身体の構造(1)	3、4、5
3	//	身体の構造(2)	3、4、5
4	馬場、山口、林	中間試験(身体の構造)	3、4、5
5	馬場	生理学総論(1)	6、7、8
6	//	生理学総論(2)	6、7、8

VI

選3年次

回数	担 当	内 容	対応 (SBOs)
7	//	循環器系・リンパ系(1)	9、10、11、12
8	//	循環器系・リンパ系(2)	9、10、11、12
9	//	循環器系・リンパ系(3)	9、10、11、12
10	林	消化器系(1)	13、14、15
11	//	消化器系(2)	13、14、15
12	//	肝·胆道系	15、16
13	馬場、山口、林	ホメオスタシス (まとめ)	17

授業で行っている工夫: あらかじめ目標とするキーワードを提示し、目標を明確にしている。予習や復習に役立つ講義資料を作成している。

モデル・コアカリ: C8 生命体の成り立ち (1) ヒトの成り立ち、(3) 生体の機能調節

キュラムとの関連

成 績 評 価 方 法: 中間試験と定期試験の結果に受講態度(小テスト・出席)を加味して総合評価する。なお、出席 不良者に対しては受験停止の措置を講ずることがあるので注意すること。また、定期試験の結果 が極めて悪い場合には、再試験の受験を認めないことがある。

教 **科** 書:新しい機能形態学-ヒトの成り立ちとその働き-(小林、馬場、平井編 廣川書店)、入門人体解 剖学(藤田著 南江堂)

参考書:標準生理学(本郷、広重編 医学書院) カラースケッチ解剖学(嶋井和世監訳 廣川書店) 人体の構造と機能(エレインN、マリーブR.N.著 医学書院)

オフィスアワー:いつでも可。但し、要予約。

所 属 教 室:馬場、山口、林 機能形態学教室 研究1号館202号室

教員からの一言: ここで得られる知識は薬理学や病態生理学などに直結します。予習・復習をするだけで講義のおもしろさは変わりますので、必ず実行してください。

生物学 Biology

学 年 第1学年 科目分類 必 修 前期·後期 前 期 単 位 1

准教授 大塚 勝弘 (A·B、C·D、E·F、G·H)

学習目標 (GIO)

薬学を学ぶうえで必要な生物学の知識を身に付けるために、生物を構成する成分、ならびに生物にとって重要な現象である遺伝、進化、発生、分化等を学習し、併せてヒトの誕生から成長、老化、死への過程に関する基本的知識を修得する。

┃ 行動目標 (SBOs)

1	生体内における水の重要性について説明できる。
2	代表的な無機塩類を列挙し、基本的性質を説明できる。
3	代表的な糖質を列挙し、基本的性質を説明できる。
4	代表的な脂質を列挙し、基本的性質を説明できる。
5	アミノ酸を列挙し、基本的性質を説明できる。
6	代表的なタンパク質を列挙し、基本的性質を説明できる。
7	核酸の基本的な構造と機能について説明できる。
8	ビタミンを分類し、基本的性質を説明できる。
9	遺伝の基本法則(メンデル遺伝など)を説明できる。
10	遺伝子と染色体の構造について概説できる。
11	遺伝性疾患について例を挙げて説明できる。
12	正常細胞とがん細胞の違いを対比して説明できる。
13	細胞の死(アポトーシスとネクローシス)について説明できる。
14	医療におけるゲノム科学について概説できる。
15	減数分裂について概説できる。
16	性染色体による性の決定を説明できる。
17	生殖の過程(受精から着床まで)を概説できる。
18	胚子期における器官形成および胎児期における成長と分化について概説できる。
19	細胞の分化の機構について概説できる。
20	多細胞生物における細胞の多様性と幹細胞の性質について概説できる。
21	ヒトの成長、老化に関する基本的現象を説明できる。
22	個体群の変動と環境変化との関係について例示できる。
23	生態系の構成について概説できる。

回数	担 当	内 容	対応 (SBOs)
1	大塚	生物を構成する成分の基礎的な構造と性質について- 1	1, 2
2	//	生物を構成する成分の基礎的な構造と性質について-2	3
3	//	生物を構成する成分の基礎的な構造と性質について-3	4, 5, 6
4	//	生物を構成する成分の基礎的な構造と性質について-4	7、8
5	//	遺伝の基本法則と遺伝子染色体について	9, 10
6	//	ヒトの遺伝性疾患について	11, 14

XI 実習科

科次

回数	担 当	内 容	対応 (SBOs)
7	//	がんの遺伝学	12、13、14
8	//	ヒトの生殖細胞の形成について	15、16
9	//	ヒトの発生の過程について- 1	17
10	//	ヒトの発生の過程について-2	18
11	//	細胞の分化について- 1	19
12	//	細胞の分化について-2	20
13	//	ヒトの成長、老化について、生態系について	21, 22, 23

授業で行っている工夫:・毎回授業の終了時に5分程度の小テストを行い、授業へのモチベーションを促し、また、授業 の理解度を把握する手立てとしている。

- ・小テストは採点をし、次回の授業の前に返却し、復習の一助としている。
- ・小テスト用紙の末尾に質問コーナーをもうけて質問を促し、質問については次回の授業の時に 対処している。
- ・授業の補助資料をweb公開し予習、復習に役立てるようにしている。
- ・教科書以外に、生物に関係する書物を読ませ、書物に触れる機会を増やす工夫をしている。
- ・1年生前期の「生物学」および「細胞生物学」、1年生後期の「生化学Ⅰ」、2年生の「生化学Ⅱ」 および「生化学III」、さらに3年生の「バイオ医薬品とゲノム情報」を生物系の関連科目、すな わち基礎から応用までステップアップする講義と捉え、一貫性を重視して講義の理解度を上げる ことを工夫している。一方、限られた講義時間を効率よく利用するために講義の重複部分につい ても必要・不要等の調整を行っている。

モデル・コアカリ: C8 生命体の成り立ち キュラムとの関連

- (1) ヒトの成り立ち
- (2) 生命体の基本単位としての細胞
- C9 生命をミクロに理解する
 - (1) 細胞を構成する分子
 - (2) 生命情報を担う遺伝子
 - (3) 生命活動を担うタンパク質
 - (4) 生体エネルギー
- C12 環境
 - (2) 生活環境と健康

成績評価方法:1) 形成的評価 a:知識:毎回授業終了時に、小テストを行うと共に質問を受け付け、フィードバッ クする。

- c:態度:授業時間中を通じて観察を行い、その場でフィードバックする。
- 2) 総括的評価 a:知識:定期試験の結果にレポートおよび受講態度(小テスト、出席など)を 加味して評価する。
 - c:態度:繰り返しの形成的評価で改善が認められれば合とするが、総合評価に 含まれる。定期試験の結果にレポートおよび受講態度(小テスト、出席など) を加味して総合評価する。なお、出席不良者に対しては定期試験受験停止の 措置を講ずることがあるので注意すること。

書:ファーマコバイオサイエンス:薬学生のための生物学(小林ら著 廣川出版) 教 科 自作プリント、Web Class

書: 受精卵からヒトになるまで (K.L. Moore 著 医歯薬出版) オフィスアワー:大塚勝弘 いつでも可。但し、要予約。 教育1号館3階

所属教室: 大塚勝弘 薬学基礎実習教育センター 教育1号館3階

教員からの一言: 高校で生物を履修しなかった学生はWeb Classsを参考にして、忘れずに予習をして下さい。

機能形態学Ⅱ

Human Anatomy and Physiology II

単 位

1

学	年	第1	学年	科目分類	必修	前期・後期	後	期	
教	授	馬場	広子(A	· B、C · [)、E·F、	G·H)			
准教	姓授	山口	宜秀(A	\cdot B、C \cdot [$D \in F$	G·H)			
講	師	林	明子(A	\cdot B、C \cdot [$0, E \cdot F,$	G·H)			

学習目標 (GIO)

ヒトの成り立ちを個体、器官、細胞レベルで理解し、ホメオスタシス(恒常性)の維持機構を理解するために、機能形態学 I (1 年前期)、II (1 年後期)、II (2 年前期)によって生命体の構造とダイナミックな機能調節機構に関する基本的知識を修得する。

┃ 行動目標 (SBOs)

1	シナプス伝達の調節機構を説明できる。
2	細胞膜の電気的性質と興奮について説明できる。
3	神経系の興奮と伝導の調節機構を説明できる。
4	中枢神経系の構成と機能の概要を説明できる。
5	末梢神経系(体性神経系、自律神経系)の構成と機能の概要を説明できる。
6	眼、耳、鼻などの感覚器について機能と構造を関連づけて説明できる。
7	運動神経による骨格筋支配を説明できる。
8	骨格筋の興奮収縮連関について説明できる。
9	骨格筋、心筋、平滑筋それぞれの収縮調節機構を比較し、説明できる。
10	肺、気管支について機能と構造を関連づけて説明できる。
11	肺および組織におけるガス交換を説明できる。
12	血液凝固・線溶系の機構を説明できる。
13	血液成分について説明できる。
14	骨髄、脾臓、胸腺などの血液・造血系臓器について機能と構造を関連づけて説明できる。

回数	担 当	内 容	対応 (SBOs)
1	ЩП	神経系総論	1、2、3
2	//	神経系(1)	4
3	//	神経系 (2)	4
4	//	神経系(3)	4, 5
5	//	神経系 (4)	5
6	林	感覚器	6
7	//	運動器 (1)	7、8
8	//	運動器 (2)	7, 8
9	//	骨格筋、心筋、平滑筋の収縮機構	9

選3年次

回数	担 当	内 容	対応 (SBOs)
10	//	呼吸器系(1)	10、11
11	//	呼吸器系(2)	10, 11
12	馬場	血液·血液凝固·線溶系(1)	12、13、14
13	//	血液·血液凝固·線溶系 (2)	12、13、14
14	//	血液·血液凝固·線溶系 (3)	12、13、14

授業で行っている工夫: あらかじめ目標とするキーワードを提示し、目標を明確にしている。予習や復習に役立つ講義資料を作成している。

モデル・コアカリ: C8 生命体の成り立ち (1) ヒトの成り立ち、(3) 生体の機能調節 キュラムとの関連

成 績 評 価 方 法: 定期試験の結果に受講態度(小テスト・出席)を加味して総合評価する。なお、出席不良者に対しては受験停止の措置を講ずることがあるので注意すること。また、定期試験の結果が極めて悪い場合には、再試験の受験を認めないことがある。

教 科 書:新しい機能形態学ーヒトの成り立ちとその働きー(小林、馬場、平井編 廣川書店)

考 書:入門人体解剖学(藤田著 南江堂) 標準生理学(本郷、広重編 医学書院)

オフィスアワー:いつでも可。但し、要予約。

所属教室:馬場、山口、林機能形態学教室研究1号館202号室

教員からの一言: ここで得られる知識は薬理学や病態生理学などに直結します。予習・復習をするだけで講義のおもしろさは変わりますので、必ず実行してください。

生化学 I

Biochemistry I

学 年 第1学年 科目分類 必修 前期・後期 後 期 単 位 1 伊東 教 授 晃 生化学·分子生物学(A·B) $(C \cdot D, G \cdot H)$ 准教授 大山 邦男 臨床ゲノム生化学 講 師 内手 昇 臨床ゲノム生化学 $(C \cdot D, G \cdot H)$ 助 教 今田 啓介 生化学·分子生物学(E·F)

学習目標 (GIO)

生化学系講義科目に挙げられる細胞生物学(一年次)、生化学 I (一年次)、II 、II (二年次)、およびバイオ医薬品とゲノム情報(三年次)では、各科目の講義内容を総合的に連携し、一貫した内容として理解できるように構築されている。このうち生化学 I および II では、生物(ヒト)における生命現象を、生体を構成する分子による生体内化学反応と捉え、その一連の反応である代謝を分子レベルで理解することを学習目標とする。当該科目では、生体内化学反応のための生体触媒である酵素の性質と役割、糖質の消化吸収と代謝および生体酸化とエネルギー産生について学ぶ。また、これら代謝の異常と疾病との関連性についても学習する。

┃ 行動目標 (SBOs)

1	酵素を触媒する反応様式により分類し、代表的なものについて性質と役割を説明できる。
2	タンパク質性酵素の特性について説明できる。
3	非タンパク質性酵素を挙げ、その作用について説明できる。
4	酵素反応における補酵素および微量金属の役割を、例を挙げて説明できる。
5	酵素反応速度論について説明できる。
6	酵素反応の阻害様式を分類し、その特性について例を挙げて説明できる。
7	酵素の活性調節に関わる酵素の多様性(アイソザイムや翻訳後修飾)について例を挙げて説明できる。
8	糖質の消化と吸収について説明できる。
9	解糖系の特徴と経路について説明できる。
10	基質レベルのリン酸化について説明できる。
11	好気的および嫌気的条件下におけるピルビン酸の代謝を説明できる。
12	クエン酸回路について説明できる。
13	ペントースリン酸経路の生理的役割について説明できる。
14	グルクロン酸経路とその生理的意義について説明できる。
15	糖新生について説明できる。
16	グリコーゲンの代謝調節(生合成と分解)について説明できる。
17	糖質の発現異常や蓄積あるいは代謝異常により生じる代表的な疾患を挙げ、その病態を概説できる。
18	代表的な生体内エネルギー運搬体を列挙し、その特性について説明できる。
19	電子伝達系(酸化的リン酸化)について説明できる。
20	ATP産生におけるミトコンドリアの役割について説明できる。
21	電子伝達系および酸化的リン酸化の阻害物質を列挙し、その阻害機構について説明できる。
22	還元型補酵素(NADH)のミトコンドリアへの移行機構について説明できる。

科次

授業内容

回数	担 当	内 容	対応 (SBOs)
1	伊東、内手、今田	酵素の分類	1
2~3	//	酵素の特性、酵素の構造と活性発現、酵素作用に影響する物質(補酵素、活性化剤)	2、3、4
4~5	//	酵素反応速度論、酵素の多様性	5、6、7
6	伊東、大山、今田	糖質の消化と吸収	8
7~9	//	嫌気的条件化での糖代謝 (解糖系)、好気的条件化での糖代謝 (クエン酸回路)	9、10、11、12、 17
10	//	ペントースリン酸経路、グルクロン酸回路	13、14、17
11	//	糖新生、グリコーゲン合成と分解およびその調節	15、16、17
12	//	ミトコンドリアにおける電子伝達系	1, 2, 3
13	//	酸化的リン酸化によるATPの産生	2, 3
14	//	電子伝達系および酸化的リン酸化の阻害物質	4
15	//	還元型補酵素(NADH)のミトコンドリアへの移行機構	5

授業で行っている工夫: 1.1 年生前期の「生物学」および「細胞生物学」、1 年生後期の「生化学 I 」、2 年生の「生化学 II」および「生化学 II」さらに3 年生の「バイオ医薬品とゲノム情報」を生物系の関連科目、すなわち基礎から応用までステップアップする講義ととらえ一貫性を重視し講義の理解度を上げることを工夫している。一方、限られた講義時間を効率よく利用するために講義の重複部分についても必要・不要等の調整をおこなっている。

- 2.Webクラスを開設しており、当該講義科目の前にうけた講義に関して理解度チェック・復習が可能なように「要点」や「国試問題」等を公開している。
- 3.Webクラスでは、講義に使用するppt原稿の一部についても公開している。
- 4.CBT予想問題のうちの該当問題をプリントとして作成、配布し、授業中に時間の余裕があれば 簡単に解説を行う。

モデル・コアカリ: C9 生命をミクロに理解する

キュラムとの関連

- (1) 細胞を構成する分子【糖質】
- (3) 生命活動を担うタンパク質【酵素】【酵素以外の機能タンパク質】
- (4) 生体エネルギー【栄養素の利用】【ATPの産生】【飢餓状態と飽食状態】(一部)
- (5) 生理活性分子とシグナル分子【ホルモン】(一部)【オータコイドなど】(一部)

成 績 評 価 方 法: 定期試験の成績および出席状況を加味して総合的に評価する。なお、出席不良者に対しては受験 停止の措置を講ずる。

教 科 書:薬学領域の生化学(伊東 晃、藤木 博太編集 広川書店)

参考書:ハーパー・生化学(上代 淑人監訳 丸善)

ロスコスキー生化学(田島 陽太郎監訳 西村書店)

マッキー生化学(市川 厚監修 福岡 伸一監訳 化学同人)

オフィスアワー: 原則的にいつでも可ですが、あらかじめ時間の確認のため連絡が必要。

所属教室:伊東生化学·分子生物学教室研究2号棟6階605

大山 臨床ゲノム生化学教室 研究2号棟6階606

内手 臨床ゲノム生化学教室 研究2号棟6階606

今田 生化学·分子生物学教室 研究2号棟6階605

特 記 事 項:教科書の各章の講義が終了した後に、WebClassを使ってレポート課題を提示し、これについてレポートの提出をしてもらいます。提出を義務づけていますが、皆さんの勉強のために、良い手助けになると思います。

教員からの一言: WebClass を活用してください。

生化学演習

Seminar in Biochemistry

学	年	第1学年	科目分類	必修	前期・後期	後期	単位	1
教	授	野水 基義	病態生化学教	教室(A·B	\cdot C \cdot D \cdot E \cdot I	- · G · H)		
助	教	保住建太郎	病態生化学教	教室(A·B	$\cdot C \cdot D \cdot E \cdot F$	$- \cdot G \cdot H$		
助	教	片桐 文彦	病態生化学教	教室(A・B	$\cdot C \cdot D \cdot E \cdot F$	= · G · H)		

学習目標 (GIO)

生化学は、生体内の各種の分子を研究し、それらによって引き起こされる化学反応を解析する科学である。したがって、生化学は生命科学全体の基本言語であり、医学や薬学をはじめとする健康科学を合理的に理解し遂行するために、その正確な知識が欠かせない。本演習では、生体のダイナミックな情報ネットワーク機構を物質や細胞レベルで理解するために、代表的な情報伝達物質の種類、作用発現機構などに関する基本的な知識を修得する。

┃ 行動目標 (SBOs)

1	主要なホルモンの分泌機構および作用機構を説明できる。
2	代表的なアミノ酸誘導体ホルモンを挙げ、その構造、産生臓器、生理作用および分泌調節機構を説明できる。
3	代表的なペプチド性ホルモンを挙げ、その産生臓器、生理作用および分泌調節機構を説明できる。
4	代表的なホルモン異常による疾患を挙げ、その病態を説明できる。
5	インスリンとグルカゴンの役割を説明できる。
6	血糖の調節機構を説明できる。
7	消化、吸収におけるホルモンの役割について説明できる。
8	代表的なステロイドホルモンを挙げ、その産生臓器、生理作用および分泌調節機構を説明できる。
9	エイコサノイドとはどのようなものか説明できる。
10	代表的なエイコサノイドを挙げ、その生合成経路を説明できる。
11	代表的なエイコサノイドを挙げ、その生理的意義(生理活性)を説明できる。
12	主な生理活性アミン(セロトニン、ヒスタミンなど)の生合成と役割について説明できる。
13	主な生理活性ペプチド(アンギオテンシン、ブラジキニンなど)の役割について説明できる。
14	血圧の調節機構を説明できる。
15	モノアミン系神経伝達物質を列挙し、その生合成経路、分解経路、生理活性を説明できる。
16	アミノ酸系神経伝達物質を列挙し、その生合成経路、分解経路、生理活性を説明できる。
17	ペプチド系神経伝達物質を列挙し、その生合成経路、分解経路、生理活性を説明できる。
18	代表的なサイトカインを挙げ、それらの役割を概説できる。
19	一酸化窒素の生合成経路と生体内での役割を説明できる。
20	細胞内外の物質や情報の授受に必要なタンパク質(受容体、チャネルなど)の構造と機能を概説できる。
21	細胞内情報伝達に関与するセカンドメッセンジャーおよびカルシウムイオンなどを、具体例を挙げて説明で きる。
22	細胞膜受容体からGタンパク系を介して細胞内へ情報を伝達する主な経路について概説できる。
23	細胞膜受容体タンパク質などのリン酸化を介して情報を伝達する主な経路について概説できる。
24	代表的な細胞内(核内)受容体の具体例を挙げて説明できる。
	-

▋授業内容

回数	担 当	内 容	対応 (SBOs)
1	野水	はじめに、講義の到達目標、生理活性物質概論	1, 2
2	//	ペプチドホルモン(1)	3、4、5、6
3	//	ペプチドホルモン(2)	3、4、7
4	//	アミノ酸誘導体ホルモン	2、11、15
5	//	ステロイドホルモン	8
6	//	エイコサノイド	9, 10, 11
7	//	生理活性アミン(セロトニン、ヒスタミンなど)	12、15、16
8	//	生理活性ペプチド(アンギオテンシンなど)	13, 14
9	片桐	神経伝達物質	15、16、17
10	//	小テスト	1 ~ 17
11	//	サイトカイン、増殖因子、ケモカイン	18
12	保住	細胞内情報伝達機構、一酸化窒素の生合成経路と生体内での 役割	19、20、21、22、 23、24
13	//	小テストの解説と授業のまとめ	1~24

授業で行っている工夫: 1.1 年生前期の「生物学」および「細胞生物学」、1 年生後期の「生化学 I 」および「生化学演習」、 2年生の「生化学 II 」、「生化学 II 」および「生物有機化学」、さらに3年生の「バイオ医薬品 とゲノム情報」を生物系の関連科目、すなわち基礎から応用までステップアップする講義と捉 え、一貫性を重視して講義の理解度を上げることを工夫している。一方、限られた講義時間を 効率よく利用するために講義の重複部分についても必要・不要等の調整をおこなっている。

- 2.本演習は生物学導入教育の一環として行うもので、最後の時間に小テストの解説と授業のまとめを行い、重要項目の再確認をする。
- 3. 当該講義科目履修後にも継続して講義に関する理解度チェック・復習ができるようにWebクラスを開設している。

モデル・コアカリ: C8 生命体の成り立ち(2) 生態の調節機能

キュラムとの関連 C9 生命をミクロに理解する (3) 生命活動を担うタンパク質、(4) 生体エネルギー、(5) 生理活性分子とシグナル分子

成 績 評 価 方 法: 定期試験の結果に小テスト、出席を加味して総合評価する。但し、出席不良者に対しては受験停止の措置を講ずることがある。

- 1) 形成的評価 a) 知識; Web Classに提示した演習問題を繰り返し行う。
- 2) 総括的評価 a) 知識; 定期試験、出席点、提出物を総合的に評価する。
- 教 科 書:生化学演習ノート

薬学領域の生化学(伊東、藤木編 廣川書店)

新しい機能形態学-ヒトの成り立ちとそのはたらき(小林、馬場、平井編 廣川書店)

参考: 細胞の分子生物学(中村桂子ら監訳 ニュートンプレス)

生命科学(東京大学教養学部理工系生命科学教科書編集委員会 羊土社)

オフィスアワー: 担当教官 いつでも可。ただし、要予約。

所属教室:野水、保住、片桐病態生化学教室(研究2号館5階508号)

微生物学 I Mid

Microbiology I

学年 第1学年 科目分類 必修 前期·後期後期 単位 1

講師 三浦 典子 (A·B、C·D、E·F、G·H)

学習目標 (GIO)

地球上には、原虫、真菌、細菌、ウイルスなど、多種多様な微生物が存在し、物質循環の一端を担っている。さらに、微生物には、疾病の予防や治療に役立つものもあり、様々な角度からヒトと深く関わっている。このような微生物を理解するために、微生物の分類と形態・構造そして代謝や生活史などに関する基本的知識を習得する。そして、微生物の有効利用やヒトと微生物の相互関係を含めた薬学領域における微生物が担う役割を理解する。

│ 行動目標 (SBOs)

1	微生物学の歴史について概説できる。
2	生態系の中での微生物の役割について説明できる。
3	原核微生物と真核微生物の違いを説明できる。
4	微生物の系統的分類について説明でき、主な細菌を列挙できる。
5	微生物の増殖や培養について説明できる。
6	環境中の微生物や環境中での微生物の利用について説明できる。
7	常在性微生物の役割について説明できる。
8	感染の成立について説明できる。
9	代表的な細菌毒素の作用を説明できる。
10	現代における感染症(日和見感染症、院内感染、国際感染症など)の特徴について説明できる。
11	代表的な細菌性・ウイルス性食中毒を列挙し、それらの原因となる微生物の性質、症状、原因食品および予防方法について説明できる。
12	代表的な真菌の形態や構造を説明できる。
13	代表的なマイコトキシンを列挙し、それによる健康障害について概説できる。
14	真菌感染症について概説できる。
15	代表的な発酵産物や利用している代謝機構について説明できる。
16	微生物による有用物質産生について説明できる。

回数	担 当	内 容	対応 (SBOs)
1	三浦	微生物学の歴史	1, 2
2	//	微生物の分類	3、4、5
3	//	微生物細胞の形態と構造	4, 5
4	//	環境と微生物	2, 6
5	//	常在性微生物	7
6	//	病気と微生物(1)	8, 9
7	//	病気と微生物(2)	8, 9, 10

選択科

回数	担 当	内 容	対応 (SBOs)
8	//	食品と微生物	11
9	//	真菌の形態、構造、生理(1)	12
10	//	真菌の形態、構造、生理(2)	12
11	//	真菌症、マイコトキシン	13, 14
12	//	発酵 (1)	15、16
13	//	発酵 (2)	15、16

授業で行っている工夫: キーワードを提示し、目標を明確にしている。講義資料はWeb公開し、復習に役立てるようにしている。複数回のレポート提出を課し、"問題解決能力の醸成"に努めている。

モデル・コアカリ: C7 自然が生み出す薬物 (2)薬の宝庫としての天然物

キュラムとの関連 C8 生命体の成り立ち (4) 小さな生き物たち

C10 生体防御 (3) 感染症にかかる

成績評価方法:1) 形成的評価 a) 知識:Web classに演習問題を提示し、繰り返し行う。

2) 総括的評価 a) 知識: 定期試験の結果および受講態度(レポート・出席など)を加味して総合評価する。なお、出席不良者は受験停止の措置を講ずることがある

ので注意すること。

教 書:新しい微生物学 第3版(廣川書店)

参考書:戸田新細菌学(吉田 眞一ら編 南山堂)

微生物バイオテクノロジー (斎藤ら著 培風館)

くらしと微生物(村尾、藤井、荒井著 培風館)

ブラック微生物学(林英生ら監訳 丸善)

イラストレイテッド微生物学(山口恵三ら監訳 丸善)

病原真菌と真菌症(山口英世著 南山堂)

オフィスアワー: 三浦典子 いつでも可。但し、メールにて予約すること。 免疫学教室 研究2号棟505号

所属教室:三浦典子 免疫学教室

 \blacksquare

医療倫理 Medical Ethics

恭一 (A · B、C · D)

尾崎

学 年 第1学年 科目分類 必 修 前期·後期 後 期 単 位 1

学習目標 (GIO)

教授 (客員)

今日の医療倫理の基本的な考え方とその理解に欠かせない倫理的な考え方について、その意義と 内容を十分理解し、医療倫理にもとづく判断や実践ができるようになるための準備を行う。とり わけ、薬の倫理への導入を図る。

教授(客員)**長島**

隆(E·F、G·H)

講師紹介

尾崎 恭一

1992年関東学園大学経済学部助教授(2001年法学部移籍)、1996-97年フンボルト大学 医学部 Gastdozent、2002年埼玉学園大学人間学部教授、2002-04年・2008-10年 日本医学哲学・倫理学会副会長、2006年-日本臨床死生学会理事

長島 降

1988年日本医科大学哲学倫理学教室専任講師、1991年10月同助教授、1996年7月同情報科学センター兼任(「情報倫理学」担当)、2002年4月から東洋大学文学部教授(「カントとドイツ観念論」分野担当)同文学研究科兼任、1992-93年、ドイツ・ボン大学哲学科客員研究員、2006-07年マールブルク大学哲学科客員教授(交換)、2004年10月から2006年10月日本医学哲学倫理学会会長。

┃ 行動目標 (SBOs)

1	医療に関わる諸問題の中から倫理的な課題を見出し、その解決策を考える態度と判断力を養う。(様々な人間関係と倫理、対立と倫理的な解決、信頼関係など)
2	倫理の基本概念を十分理解し、医療場面に関係づけて説明できる。(原則、理論、人格、幸福と正義、義務 論と目的論、完全義務と不完全義務、価値観、人権、法令、社会倫理、個人道徳、慣習倫理など)
3	医療において尊重するべき基本価値を理解し、相互の葛藤について説明できる。(人格・個人・人間・生命の尊厳、生活の質、健康など)
4	医療倫理の基本原則について、その内容と連関を倫理的な視点から説明できる。(生命倫理4原則、臨床倫理4分割法、EU宣言、ユネスコ宣言など)
5	患者の権利、とくに自己決定権やインフォームドコンセント、医療アクセス権・受療権などについて、重要 性を認識し、内容を説明できる。
6	患者の医療情報アクセス権、自己情報コントロール権を含むプライバシー権などについて、重要性を認識し、 説明できる。
7	医療職のそれぞれの権限とその関係を理解し、倫理的に妥当な判断ができる。(専門職、資格、裁量権、応 需義務、社会的責任、チーム医療、医薬分業など)
8	倫理委員会の役割と研究及び診療に対する意味について理解し、説明できる。
9	死生観について、その確立を目指すとともに、多様な考え方を理解し、説明できる。
10	医療倫理に関わる条約・法令・宣言・職能団体内規の意義について説明できる。
11	患者の権利に関するリスボン宣言について説明できる。
12	ヒポクラテスの誓いや各医療職の基本的な倫理規程について説明できる。
13	「薬物療法を遂行する際の医師と薬剤師の職分に関する声明」について説明できる(医薬分業)。
14	薬剤師法の倫理関連条項について、その重要性を認識し、説明できる。
15	日本薬剤師会や国際薬剤師・薬学連合の倫理規定について重要性を認識し、説明できる。
16	疾病構造の転換などと、それに伴う医療者の役割変化について理解し、説明することができる。
17	薬学に対する今日的要請と薬の倫理について、その重要性を認識し、説明できる。(医薬分業、薬歴管理、 プライバシー保護、服薬指導、セルフメディケーション、創薬、テーラーメイド・メディシンなど)
18	ヒトを対象とする医学研究についてのヘルシンキ宣言について説明ができる。
19	治験に関する厚労省令、新GCPおよび臨床研究に関する倫理指針の意義を理解し、説明できる。

回数	担当	内 容	対応 (SBOs)
1	尾崎、長島	なぜ、どう医療倫理を学ぶか 医療と倫理(1)医療の役割変化 疾病構造転換・医療需要多様化・医薬分業・創薬ビジョンと職域拡大。 (2)患者・被験者の健康と人権 医療事故・薬害、人権運動、医事訴訟。 (3)倫理の問題と解決 利益・共同・倫理の人間関係 対立・解決・ 信頼関係、(4)事件報道・典型例・理論	1、7、16、17
2	//	I.倫理の基本的な考え方(1)倫理的解決の基準 行為と規範:自由と責任、社会生活と慣習・理念、倫理的自覚。3領域:慣習倫理・法令会則・個人道徳。医療倫理:医療者と法令指針・職能団体規程・慣行・良心、患者の権利と責任。	1, 2

回数	担当	内 容	対応 (SBOs)
3	//	(2) 倫理原則 規範・原則・規範体系、行為の手段・目的、義務論・幸福論、自然権論・功利主義、完全義務と不完全義務。倫理的義務と法的義務。医療倫理:生命倫理と原則主義・折衷主義・状況倫理。	1, 2
4	//	(3) 人間の尊厳と人権 尊厳と価値、生命・人間・個人・人格の尊厳、 人権、権利と特権、自由権と社会権。医療倫理:個人の尊重・人類 の福祉・自己決定権、医療アクセス権・受療権。	2、3
5	//	Ⅱ.生命倫理とその基本原則 (1)米国発の生命倫理と臨床倫理 ヒボクラテスの誓い、様々な人権運動と生命倫理の成立。生命倫理 4原則と自己決定権、医療行為の正当性。臨床倫理の4分割法。	4、5、12
6	//	(2)ユネスコ生命倫理宣言 米国4原則とEU4原則。世界人権宣言。 健康概念。人間の尊厳と人権、自律と責任、利益と害悪、脆弱性と 統合性、公正、文化的多様性。新視点: 尊厳·文化·社会·未来·生物。	3、4、5
7	//	(3) 患者の自己決定権 自己決定権の根拠、愚行権と強制保護、価値観の多様性と生命の尊厳(SOL)、生命の尊厳と生活の質・生命の質(QOL)、死生観。	3、5、9
8	//	(4) インフォームドコンセント 説明・理解・同意。治療・実験の 強制とICへの歴史。知る権利と自己決定権、医療情報アクセス権、 セカンドオピニオン。愚行権、商業主義、同意能力、倫理委員会。	5, 6, 18, 19
9	//	まとめ:社会倫理の時代 人間関係と倫理 人間の尊厳と人権、生命倫理の諸原則、自己決定権とIC	
10	//	Ⅲ.専門職の倫理(1)専門職と社会倫理 Professionの資格·権限· 義務、専門職の自己規律と倫理規程。医療専門職の倫理規程。	7、10、12
11	//	(2) 職業倫理と薬剤師倫理 日本薬剤師会の倫理規定、国際薬剤師・薬学連合の倫理規定、薬剤師法。	10、13、14、15
12	//	(3) 薬の倫理 ①治療とリスボン宣言 パターナリズム。医薬分業、服薬指導、薬歴管理、疑義照会、チーム医療。健康観と治療・予防・増進。患者の権利:医療アクセス権、自己決定権、学習権、尊厳とプライバシー、代理同意、推定同意、拒否権。倫理委員会(HEC)。	8、11、13、14、 16、17
13	//	(4) 薬の倫理 ②研究とヘルシンキ宣言 社会の利益と被験者の保護・権利、自発的同意、同意撤回権、匿名化、自己情報コントロール権、偽薬、研究計画書、モニター。創薬ビジョン・新GCP・倫理委員会(IRB)。	6、8、14、18、 19
14	//	まとめ:新しい時代の薬剤師 専門職、薬剤師倫理、研究と治療の 薬の倫理	

授業で行っている工夫:・PPTとサブノート式授業時配布物の併用により、受講生が視覚確認と手作業による学習を行い 習得しやすくしている。

- ・各回の初めに、キーワードを提示し、習得目標を明確にしている。
- ・中間まとめや最終まとめにおいて、模擬試験と解説を行い、受講生が自らの習得を確認し、学習法を改善するよう援助している。
- ·受講生が比較的答えやすく、関心をもつべき事項の発問に心がけるなど、受講生の参加意識を 高める工夫をしている。

モデル・コアカリ: A. 全学年を通じて: ヒューマニズムについて学ぶ

キュラムとの関連 (1) 生と死

- (2) 医療の担い手としてのこころ構え
- (3) 信頼関係の確立を目指して
- ・以上の項目を中心的に扱い、他の事項については倫理に関わる限りで触れることにする。

成 績 評 価 方 法: 定期試験の結果にレポート・出席等を加味し総合評価をする。出席不良者には受験停止の措置を 講ずることがある。

教 書:講義内容と資料のプリントを配布する。

参考書: 資料集 生命倫理と法(尾崎恭一、長島隆他編著 太陽出版)

薬学生のための医療倫理(松島哲久、盛永審一郎編著 丸善株式会社)

薬剤師のための倫理 (R. M. ヴィーチ、A. ハダッド著 南山堂)

薬剤師とくすりと倫理(奥田 潤、川村和美著 じほう)

教員からの一言:薬剤師の社会的な役割と裁量はますます重要なものになりつつあり、それとともに独立して担う 責任も大きくなります。それに応えられるだけの科学性と倫理性をしっかり身につけて頂きたい のです。とくに医療倫理の社会的意義は今後大きくなっていきますし、社会の目もすでに厳しく なっています。

そのため本講では、多様化した社会の中で揺るぎのない倫理・生命倫理・医療倫理の基本を学んで頂きます。その上で後に、現場に直結する臨床倫理を学ぶことになります。まずは、基本的な知識と考え方をぜひ主体的に学び取って下さい。この授業は医療倫理のトレーニングの出発点と考えていただきたいと思います。

I

2年次 必修科目

■総合科目	
[外国語科目]	
薬学英語	92
■共通専門科目	
[物理系薬学]	
物理的平衡論	93
機器分析学	95
臨床分析化学	97
熱力学・反応速度論	99
放射化学	101
[化学系薬学]	
有機化学Ⅲ	102
機器スペクトル演習	104
植物薬品学	106
有機化学Ⅳ	108
生物有機化学	110
漢方薬物学	112
[生物系薬学]	
機能形態学	114
生化学Ⅱ	116
微生物学Ⅱ	118
生理活性物質概論	120
生化学Ⅲ	122
免疫学 · · · · · · · · · · · · · · · · · · ·	124
[健康と環境]	
健康保持と疾病予防	126
[医薬品をつくる]	
生物薬剤学	128
応用統計学	130
物理薬剤学	132
[薬と疾病]	
医療心理	
薬の効き方 [136
	139
疾病と薬物治療Ⅱ	141

医療情報 …………143

薬学英語 English for Pharmacy

学 年 第	第2学年	科目分類 必	修	前期・後期	通年		単 位	2
准教授	大野 真	[(1 · 4)	Х	 	森本(信子(2 · 5 · 8 ·	11)
非常勤講師	満留 敦司	 (3 · 6 · 9 ·	12) 🗦	非常勤講師	森本	奈理 (7 · 10)	

学習目標 (GIO)

将来、薬学者として専門文献や科学記事を読解するために、科学的な文章を学習し、それらの構文や文法を理解しかつ基礎的な専門語彙を習得する。また、それらの構文や文法・語彙を用いて英文を書くことを目標とした基礎的訓練を行う。さらに平行して速読の訓練を行い、パラグラフのすばやい要旨把握能力を習得する。

▋行動目標 (SBOs)

1	様々な辞書の使い分け方と使用方法を理解する。
2	精読と速読の相違点を理解する。
3	精読において、文章の構文と文法を正確に説明できる。
4	精読において、基礎的な専門的語彙を習得する。
5	精読において、文章を正確に発音できる。
6	速読において、各パラグラフの要旨をすばやく把握できる。
7	学習した構文と文法・語彙を用いた練習問題が解ける。
8	学習した構文と文法・語彙を用いて簡単な英文が書ける。

授業内容

回数	内 容	対応 (SBOs)
1	前期授業のイントロダクション	1, 2
2~12	前期テキストの講読	3~8
13	前期試験	3~8
14	後期授業のイントロダクション	1, 2
15~25	後期テキストの講読	3~8
26	後期試験	3~8

授業で行っている工夫: 医学・薬学的な話題を中心として、幅広い英語力を養えるように共通テキストを選定している。

速読と精読の両方を訓練する。

モデル・コアカリ: F(2)(薬学英語入門) キュラムとの関連

成 績 評 価 方 法: 1) 形成的評価 a) 知識: 演習問題を繰り返し行う。

c) 態度: 出席、提出物、受講態度を評価する。なお、出席不良者に対しては定期試験受験停止の措置を講じることがあるので注意すること。

2) 総括的評価 a) 知識: 定期試験、出席点、提出物を総合的に評価する。

c) 態度:繰り返しの形成的評価で改善が認められれば合とする。

教 科 書:別に指示する。

参 考 書:リーダーズ英和辞典(松田編 研究社)

オフィスアワー:大野 真 いつでも可。 但し、要予約。

森本 信子 いつでも可。 但し、要予約。

非常勤講師 講師控室にて。 薬学部事務にて要予約。

所属教室:大野真 第2英語教室 研究2号館207号

森本 信子 第4英語教室 研究2号館609号

物理的平衡論 Physical Chemistry II

 学年
 第2学年
 科目分類
 必修
 前期・後期
 前期

 教授
 横松力(A・B、C・D、E・F、G・H)

学習目標 (GIO)

物質は分子の集合体であり、物質の物理的性質は個々の分子の性質で定まるのではなく分子の集合状態および分子間相互作用で著しい影響を受けます。この講義を通して、複雑な系における物質の状態を解析するために、物質の溶液の状態、相の状態(気相、液相、固相)と相変化、界面現象などに関する基礎的知識を修得して下さい。

単 位

1

│ 行動目標 (SBOs)

1	相平衡と相律について説明できる。
2	代表的な状態図(一成分、二成分、三成分系相図)について説明できる。
3	結晶多形について説明できる。
4	相変化に伴う熱の移動(Clausius — Clapeylonの式など)について説明できる。
5	物質の溶解平衡について説明できる。
6	分配平衡について説明できる。
7	物質の溶解度におけるpH依存性について説明できる。
8	溶解度の温度依存性(van't Hoffの式)について説明できる。
9	溶液の束一的性質(浸透圧、沸点上昇、凝固点降下など)について説明できる。
10	拡散および溶解速度について説明できる。
11	沈降現象について説明できる。
12	流動現象および粘度について説明できる。
13	吸着平衡について説明できる。
14	界面における平衡について説明できる。
15	代表的な物理平衡の平衡定数を求めることができる。

回数	担 当	内 容	対応 (SBOs)
1	横松	混合物と溶液の性質について	5
2	//	弱電解質の溶解度について	7
3	//	溶解度の温度依存性について	5, 8, 15
4	//	非混合溶媒間への溶質の分配について	6、15
5	//	ヘンリーの法則とラウールの法則について	9
6	//	希薄溶液の束一的性質について	9
7	//	浸透圧について	9
8	//	拡散および溶解速度について	10, 11
9	//	相律および一成分系の相図について	1, 2, 4

T XI 実習科目

回数	担 当	内 容	対応 (SBOs)
10	//	結晶多形について	3
11	//	二成分および三成分系の相図について	1, 2
12	//	吸着平衡と界面の性質について	13、14、15
13	//	流動現象と粘度について	12

授業で行っている工夫: 1) それぞれの講義のはじめに、目標とするキーワードを示します。このキーワードが理解できるように講義に集中し、ノートを取って下さい。

2) それぞれの講義のおわりに、CBTと国家試験との関連を例示し、要点を明確にします。

モデル・コアカリ: C1 物質の物理的性質 (3)物質の状態 II:物理平衡;溶液の化学

キュラムとの関連 C2 化学物質の分析 (1) 化学平衡:酸と塩基(一部);各種の化学平衡(一部)

成績評価方法:1) 形成的評価 a) 知識:演習問題を行なう。

2) 総括的評価 a) 知識:レポート、試験を総合的に評価する。

教 科 書:薬学領域の物理化学(渋谷 皓編集 横松 力、湯浅洋子 他 著 廣川書店)

参考:物理化学要論 第2版(アトキンス著 千原秀昭、稲葉 章訳 東京化学同人)

化学・生命科学系のための物理化学(Raymond Chang著 岩澤康裕、北川禎三、濱口宏夫訳東京化学同人)

日本薬学会編 物理系薬学 I.物質の物理的性質(東京化学同人、スタンダード薬学シリーズ2)

オフィスアワー:横松 予約をとればいつでも可。

所属教室: 横松 分子機能解析学教室 研究 1 号館 3 階 3 0 3 号室

VI

機器分析学 Instrumental Analysis

 学年
 第2学年
 科目分類
 必修
 前期・後期
 前期
 単位
 1

 講師
 田代
 櫻子
 薬物生体分析学教室(A・B、C・D、E・F、G・H)

学習目標 (GIO)

試料中に存在する物質の種類および濃度を正確に知るために、現在よく利用されている各種機器分析法の原理から応用までを習得する。また、これらの分析法をバイオテクノロジー領域へ進展させたときの知識を習得し、応用する技術を身につける。更に、日本薬局方一般試験法の各種機器分析法を利用して薬局方収載医薬品の定量法についての知識を習得し、それらを応用する技術を身につける。

┃ 行動目標 (SBOs)

1	紫外可視吸光分析の原理を説明し、生体分子の解析への応用例について説明できる。
2	蛍光分析の原理を説明し、生体分子の解析への応用例について説明できる。
3	原子吸光および原子発光分析の原理、操作法、応用例を説明できる。
4	クロマトグラフィーの種類を列挙し、それぞれの特徴と分離機構を説明できる。
5	クロマトグラフィーで用いられる代表的な検出法と装置を説明できる。
6	電気泳動法の原理、操作法および応用例を説明できる。
7	熱分析法の種類及びそれぞれの特徴を説明できる。
8	電気滴定(電位差滴定、電気伝導度滴定など)の原理、操作法および応用例を説明できる。

回数	担 当	内 容	対応 (SBOs)
1	田代	1) 光分析 総論	1、2、3
2	//	紫外可視吸光分析 Lambert – Beerの法則	1
3	//	紫外可視吸光分析、吸収スペクトル	1
4	//	蛍光分析	2
5	//	原子吸光および原子発光分析	3
6	//	2) 分離分析 総論	4、5、6
7	//	クロマトグラフィーの基礎	4
8	//	クロマトグラフィーの分類	4
9	//	液体クロマトグラフィー	4、5
10	//	ガスクロマトグラフィー	4、5
11	//	電気泳動法	6
12	//	熱分析法	7
13	//	3) 電気分析 総論	8

授業で行っている工夫: 授業は基本すべて板書で行い、重要項目をハイライトなどして強調しながら、ノートを用いた復習の役に立つよう工夫している。毎回、授業の始めに5分程使って前回の復習を行い、次の講義内容への繋ぎを行う。大項目が終了した時点で、反復学習も兼ねて演習問題を用いて理解度の確認を行い、学習漏れがないかその都度確認できるようにする。

モデル・コアカリ: C2 化学物質の分析 (2) 化学物質の検出と定量 (3) 分析技術の臨床応用

キュラムとの関連 C3 生体分子の姿・かたちをとらえる (1)生体分子を解析する手法

成績評価方法: 定期試験の結果に、レポート、演習問題および受講態度(出欠など)を加味して評価する。なお、 出席不良者に対しては受験停止の措置を講ずることがあるので注意すること。

教 科 書:薬学生のための分析化学-第3版-(楠文代他著 廣川書店)

参考:第十五改正日本薬局方解説書(廣川書店)

CBT対策と演習 - 機器分析(薬学教育研究会 編集 廣川書店)

演習を中心とした薬学生の分析化学-第4版-(嶋田健次他著 廣川書店)

オフィスアワー: いつでも可、ただし事前にメールで予約する事。 薬物生体分析学教室 研究2号館4階

VI

臨床分析化学 Clinical Application of Analytical Chemistry

修

科目分類 必 袴田 秀樹(A·B、C·D、E·F、G·H) 准教授 講 小谷 \mathbf{H} (A·B、C·D、E·F、G·H) 師

学習目標 (GIO)

臨床や薬学研究で分析技術を適切に応用するために、代表的な分析法の基本的知識と技術を修得 する。具体的には、生体試料の取り扱いと前処理法、光分析法、電気分析法、クロマトグラフィー や電気泳動による分離分析法、免疫学的測定法など、臨床や研究で使用されている分析法の基本 を修得する。加えて、最近の生命科学の解析技術や臨床検査の概略を身につけ、更に代表的な画 像診断技術の基本を修得する。

前期・後期

前 期 単 位

┃ 行動目標 (SBOs)

第2学年

1	代表的な生体試料について、目的に即した前処理と適切な取り扱いが理解できる。
2	医薬品分析法のバリデーションについて説明できる。
3	臨床分析における精度管理および標準物質の意義を説明できる。
4	臨床分析の分野で用いられる代表的な分析法を列挙できる。
5	紫外可視吸光度測定法の原理を説明し、生体分子の解析への応用例について説明できる。
6	蛍光光度法の原理を説明し、生体分子の解析への応用例について説明できる。
7	免疫反応を用いた分析法の原理、実施法および応用例を説明できる。
8	酵素を用いた代表的な分析法の原理を説明できる。
9	クロマトグラフィーの種類を列挙し、それぞれの特徴と分離機構を説明できる。
10	電気泳動法の原理と生体試料の分析への応用例について説明できる。
11	代表的なセンサーを列挙し、原理および応用例を説明できる。
12	代表的なドライケミストリーについて概説できる。
13	代表的な画像診断技術(X線検査、CTスキャン、MRI、超音波、核医学検査など)について概説できる。
14	画像診断薬(造影剤、放射性医薬品など)について概説できる。
15	薬学領域で繁用されるその他の分析技術(バイオイメージング、マイクロチップなど)について概説できる。
16	日本薬局方収載の生物学的定量法の特徴を説明できる。
17	遺伝子やタンパク質の解析技術の基本について概説できる。
	•

▋授業内容

回数	担 当	内 容	対応 (SBOs)
1	袴田	はじめに 臨床における分析化学の役割、臨床検査とは	4
2~3	//	分析データの取り扱い 検査結果の表示、臨床検査における 精度管理、精度管理の方法論	2、3、4
4	//	生体試料 (検体) の取り扱い 分析方法の選択、生体試料の 採取、生体試料の保存と前処理	1, 4
5	小谷	電気分析法を用いる臨床検査法 電気分析法の原理、センサーによる臨床検査	4、11

XI 実習科目

回数	担 当	内 容	対応 (SBOs)
6	//	紫外可視吸光光度法を用いる臨床検査法 光分析総論、紫外可視吸光光度法の原理、臨床検査における測定例	4、5、12
7	//	蛍光光度法又は発光を用いる臨床検査法 蛍光光度法の原理、 臨床検査における測定例、発光を用いる分析法	4、6
8	//	クロマトグラフィー クロマトグラフィーの原理、HPLCにおける種々の高感度検出法、HPLCを用いる臨床検査法	4、9
9	袴田	電気泳動法 ゲル電気泳動、キャピラリー電気泳動	4、10
10	//	生物学的分析法 バイオアッセイ、酵素化学的分析法、イムノアッセイ	4、7、8、16
11	//	薬学研究によく使われる実験法 遺伝子解析法の基本、タンパク質解析法の基本	15、17
12~13	//	画像診断の基本 画像検査の分類、単純X線写真、超音波検査、 内視鏡検査、X線CT、MRI、核医学検査	4、13、14

授業で行っている工夫: 授業は基本的に板書とし、集中できるように努めている。教科書としてプリントを作成し、修得すべき内容をあらかじめ提示している。授業の終わりにはプリントの章末問題の中から 1 ~ 2 題を小テストとして解いて提出してもらい、その講義で何を伝えたかったかを理解してもらうようにしている。

モデル・コアカリ: C2 化学物質の分析 (3) 分析技術の臨床応用 キュラムとの関連

成 **績 評 価 方 法**: 1) 形成的評価 a) 知識:講義に関するレポートを提出させそれに基づき評価する。

b) 技能: レポートの書き方などで評価する。

c) 態度:毎回の出席状況、提出物の提出状況などで評価する。

2) 総括的評価 a) 知識: 定期試験の結果、レポートを総合的に評価する。

b) 技能:定期試験の正解の解答法を評価する。

c) 態度: レポートおよび毎回の講義の受講態度 (小テスト、出欠など) を評価する。

教 科 書: プリント配布

参考書:薬学生のための分析化学第3版(楠文代他著廣川書店)

第十五改正日本薬局方解説書(廣川書店)

オフィスアワー: いつでも可 分析化学教室 研究2号館406号 但し、要予約

所属教室: 袴田 分析化学教室 研究2号館406号 小谷 分析化学教室 研究2号館406号

熱力学・反応速度論

Physical Chemistry III

単 位

1

後期

教 授 **横松 力** (A·B、C·D、E·F、G·H)

科目分類

必修

学習目標 (GIO)

年

第2学年

物質の状態変化や化学反応など自然界で起こっている諸現象において、エネルギーと呼ばれる状態量がどのように変化するか、また、エネルギーの形態はどのように変化するか、どのような時に自発的な変化が起こるのか、このような問題を取り扱う学問が熱力学です。また、物質の変化の過程を時間の関数として取り扱う学問が反応速度論です。この講義を通して、物質の状態および相互変換過程を解析できるようになるために、熱力学および反応速度論の基礎的知識を修得して下さい。

前期・後期

┃ 行動目標 (SBOs)

1	反応次数と速度定数について説明できる。
2	微分速度式を積分速度式に変換できる。
3	代表的な反応次数の決定法を列挙し、説明できる。
4	代表的な複合反応(可逆反応、平行反応、連続反応など)の特徴について説明できる。
5	反応速度と温度の関係(Arrheniusの式)を説明できる。
6	衝突理論および遷移状態理論について説明できる。
7	代表的な触媒反応(酸・塩基触媒反応など)について説明できる。
8	酵素反応、およびその拮抗阻害と非拮抗阻害の機構について説明できる。
9	系、外界、境界について説明できる。
10	状態関数の種類と特徴について説明できる。
11	仕事および熱の概念を説明できる。
12	定容熱容量および定圧熱容量について説明できる。
13	エンタルピーについて説明できる。
14	熱力学第一法則について式を用いて説明できる。
15	標準生成エンタルピーについて説明できる。
16	熱力学第二法則とエントロピーについて説明できる。
17	代表的な物理変化、化学変化に伴うエントロピー変化を計算できる。。
18	熱力学第三法則を説明できる。
19	自由エネルギーについて説明できる。
20	熱力学関数の計算結果から、自発的な変化の方向と程度を予測できる。
21	自由エネルギーの圧力と温度による変化を、式を用いて説明できる。
22	自由エネルギーと平衡定数の温度依存性(van\'t Hoffの式)について説明できる。
23	化学ポテンシャルについて説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	横松	反応速度の表し方と反応次数について	1, 2, 3
2	//	基本的な反応速度式について	1, 2, 3
3	//	複合反応の反応速度について	4
4	//	反応速度の温度依存性について	5
5	//	衝突理論と遷移状態理論について	6
6	//	酸・塩基触媒反応について	7
7	//	酵素反応とその阻害について	8
8	//	熱力学第一法則と熱化学について	9、10、11、12、 13、14、15
9	//	熱力学第二法則とエントロピーについて	13、14、15
10	//	熱力学第三法則について	16、17、18
11	//	自由エネルギーについて	19, 20, 21
12	//	化学反応における自由エネルギー変化について	19、20、21、22
13	//	化学ポテンシャルと相平衡について	23

授業で行っている工夫: 1) それぞれの講義のはじめに、目標とするキーワードを示します。このキーワードが理解でき るように講義に集中し、ノートを取って下さい。

2) それぞれの講義のおわりに、CBTと国家試験との関連を例示し、要点を明確にします。

モデル・コアカリ: C1 物質の物理的性質: (2) 物質の状態 I: エネルギー、自発的変化(3) 物質の状態 I: 溶液 キュラムとの関連 の化学(4)物質の変化:反応速度、物質の移動

成績評価方法:1) 形成的評価 a) 知識:演習問題を行なう。

2) 総括的評価 a) 知識: レポート、試験を総合的に評価する

教 科 書:薬学領域の物理化学(渋谷 皓編集 横松 力、湯浅洋子他著 廣川書店)

参 考 書:物理化学要論 第2版(アトキンス著 千原秀昭、稲葉 章訳 東京化学同人)

> 化学・生命科学系のための物理化学(Raymond Chang著 岩澤康裕、北川禎三、濱口宏夫訳 東京化学同人)

日本薬学会編 物理系薬学 I.物質の物理的性質(東京化学同人、スタンダード薬学シリーズ2)

オフィスアワー: 横松 予約をとればいつでも可。

所 属 教 室: 横松 分子機能解析学教室 研究 1 号館 3 階 303 号室

放射化学 Radiochemistry

学年 第2学年 科目分類 必修 前期·後期後期 単位 1

准教授 堀江 正信(A·B、C·D、E·F、G·H)

学習目標 (GIO)

放射性同位体は医療の分野において大きな貢献を果たしており、薬剤師も放射性医薬品の製造、管理などの面で責務を担う必要がある。また、放射性同位体トレーサー法は分析化学、生化学、薬理学、薬物動態学などの研究に新しい技術を提供し、大きな寄与をしてきた。放射化学では、放射性同位体についての基礎的な事項、医学・薬学への応用、放射線障害などについての理解を深めることをねらいとしている。

┃ 行動目標 (SBOs)

1	原子の構造およびその安定性について説明できる。
2	$lpha$ 、 eta 、 γ 壊変などの放射性壊変の種類について説明できる。
3	$lpha$ 、 eta 、 γ 線などの放射線の種類について説明できる。
4	放射平衡およびその応用例について説明できる。
5	放射線と物質との相互作用について説明できる。
6	放射線の測定原理について説明できる。
7	原子核反応について概説できる。
8	放射線の生体への影響について概説できる。
9	放射性同位体の医療への応用について概説できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	堀江	原子核の構成	1
2	//	原子核の安定性	1
3	//	壊変形式	2、3、4
4	//	壊変速度および放射能の単位	2, 3
5~6	//	放射線と物質との相互作用	5
7~8	//	放射線の検出方法および装置	6
9	//	原子核反応	7
10~12	//	放射性同位体の医学・薬学への応用	9
13	//	放射線の生物作用の特徴、個体レベルへの影響	8

授業で行っている工夫:授業は基本的に板書で行う。測定機器の重要部分などの資料を授業中に回覧する。いくつかの計算問題については、宿題とし、解答を学生掲示板に掲示する。

(1)薬剤師を取り巻く法律と制度

モデル・コアカリ:Cl 物質の物理的性質 (1)物質の構造

キュラムとの関連 C2 化学物質の分析 (3)分析技術の臨床応用

C12 環境 (1) 化学物質の生体への影響

C18 薬学と社会 成 績 評 価 方 法: 授業開始時に説明する。

教 **書**:放射化学·放射薬品学(五郎丸、堀江編 廣川書店)

参 考 書:特になし。

オフィスアワー:特に設けない。お互いに都合のよい時間帯。

所属教室:RI共同実験室研究2号館1階RI共同実験室管理室

有機化学Ⅲ Organic Chemistry III

年 第2学年 科目分類 必 修 前期・後期 前 期 単 位 1 **隆司**(E·F)

准教授 森川 勉 (G·H) 准教授 松本

講 師 釜池 和大 (A·B、C·D)

学習目標 (GIO)

ジエンおよび芳香族化合物の構造と性質および基本的反応に関する知識を修得し、医薬品を含む 様々な化合物を合成するために、炭素骨格の構築に関する基本的反応を修得する。

┃ 行動目標 (SBOs)

1	有機化合物の性質に及ぼす共鳴の影響について説明できる。
2	炭素を含む反応中間体(カルボカチオン)の構造と性質を説明できる。
3	有機反応を、電子の動きを示す矢印を用いて説明できる。
4	カルボカチオンの級数と安定性について説明できる。
5	共役ジエンの製法と安定性について説明できる。
6	共役ジエンへのハロゲン化水素の付加反応の特徴について説明できる。
7	炭素骨格の構築法として、Diels - Alder反応の特徴を具体例を用いて説明できる。
8	芳香族化合物をIUPACの規則に従って命名できる。
9	代表的な芳香族化合物を列挙し、その物性と反応性を説明できる。
10	芳香族性(Hückel則)の概念を説明できる。
11	芳香族化合物の求電子置換反応の機構を説明できる。
12	芳香族化合物の求電子置換反応の反応性および配向性に及ぼす置換基効果を説明できる。
13	芳香族化合物の代表的な求核置換反応について説明できる。
14	ベンザインの性質について説明でき、化合物合成への利用について概説できる。
15	芳香族化合物の代表的な酸化について説明できる。
16	芳香族化合物の代表的な還元について説明できる。

回数	担 当	内 容	対応 (SBOs)
1	森川 (勉)、松本、釜池	共役ジエン:製法と安定性	1, 2, 3, 4, 5
2	//	共役ジエン: 求電子付加反応	1, 2, 3, 4, 5, 6
3	//	共役ジエン:Diels - Alder 付加環化反応	7
4	//	代表的芳香族化合物の命名	8
5	//	ベンゼンと芳香族性:ベンゼンの構造と安定性	1, 9
6	//	芳香族化合物:Hückel則と芳香族性・複素環式化合物	10
7~8	//	ベンゼンの化学:芳香族求電子置換反応	2、3、11
9~10	//	ベンゼンの化学: 芳香族求電子置換反応の反応性および配向性に及ぼす置換基の効果	1, 3, 11, 12

Ι

必6

選3年次

回数	担 当	内 容	対応 (SBOs)
11	//	ベンゼンの化学:芳香族求核置換反応	3、13
12	//	ベンゼンの化学:ベンザイン、酸化、還元	14、15、16
13	//	ベンゼンの化学:三置換ベンゼンの合成	12、13、14、 15、16
14	//	まとめ	1~16

授業で行っている工夫: あらかじめ目標とするキーワードを提示し、目標を明確にしている。講義内容をまとめた資料の配布、小テストによる演習、授業内容に関連した国家試験の問題の解説等を行い、理解を深めるよう努めている。

モデル・コアカリ: C4 化学物質と性質と反応(2)有機化合物の骨格

キュラムとの関連 C5 ターゲット分子の合成(1)官能基の導入・変換(2)複雑な化合物の合成

成績評価方法: 1) 形成的評価 a) 知識:適宜小テストを行う。 c) 態度:受講状況(出欠等)を記録する。 2) 総括的評価 a) 知識:定期試験 c) 態度:受講態度(出欠等)を加味して総合評価する。

教 書:マクマリー有機化学 第7版(上、中、下)(J. McMurry著 伊藤ら訳 東京化学同人)

参考: 有機反応機構(P. Sykes著 久保田尚志訳 東京化学同人)

有機化学 基礎の基礎(山本嘉則編著 化学同人)

最新 全有機化合物名称のつけ方(廖 春栄著 三共出版) よくわかる有機化学の基本と仕組み(木原伸浩著 秀和システム)

絶対わかる有機化学(齊藤勝裕著 講談社)

オフィスアワー:いつでも可。 但し、要予約。

所属教室: 森川 勉薬学教育推進センター 教育1号館1階1105

松本 隆司 有機合成化学教室 研究2号館3階304 釜池 和大 生物分子有機化学教室 研究2号館2階205

機器スペクトル演習

Seminar in Spectroscopic Analysis

単 位

学 年 第2学年 科目分類 必 修

教 授 **三巻 祥浩** (A·B) 講 師 **横須賀章人** (C·D)

講師 古石 裕治(E·F·G·H)

学習目標 (GIO)

有機化合物の構造決定に用いられる機器分析法の特徴を理解して説明できることを総論の到達目標として演習を行う。基本的な化学物質の構造決定ができるようになるために、赤外吸収(IR)スペクトル、核磁気共鳴(NMR)スペクトル、マススペクトルの基本的知識と、データ解析のための基本的技能を修得する。

前期・後期

前

期

▋行動目標 (SBOs)

1	IRスペクトルの概要と測定法を説明できる。
2	IRスペクトル上の基本的な官能基の特性吸収を列挙し、帰属することができる。
3	NMRスペクトルの概要と測定法を説明できる。
4	化学シフトに及ぼす構造的要因を説明できる。
5	有機化合物中の代表的水素原子について、おおよその化学シフト値を示すことができる。
6	重水添加による重水素置換の方法と原理を説明できる。
7	1H NMRの積分値の意味を説明できる。
8	1H NMRのシグナルが近接プロトンにより分裂(カップリング)する理由と、分裂様式を説明できる。
9	1H NMRのスピン結合定数から得られる情報を列挙し、その内容を説明できる。
10	代表的化合物の部分構造を 1H NMRから決定できる。
11	マススペクトルの概要と測定法を説明できる。
12	イオン化の方法を列挙し、それらの特徴を説明できる。
13	ピークの種類(基準ピーク、分子イオンピーク、同位体ピーク、フラグメントピーク)が説明できる。
14	塩素原子や臭素原子を含む化合物のマススペクトルの特徴を説明できる。
15	代表的なフラグメンテーションについて概説できる。
16	高分解能マススペクトルにおける分子式の決定法を説明できる。
17	基本的な化合物のマススペクトルを解析できる。
18	代表的な機器分析法を用いて、基本的な化合物の構造決定ができる。

回数	担 当	内 容	対応 (SBOs)
1	三巻、古石、横須賀	赤外吸収スペクトル(測定の原理、結合の伸縮振動と変角振動)	1, 2
2	//	赤外吸収スペクトル(特性吸収帯、指紋領域)	1, 2
3	//	赤外吸収スペクトル(種々の有機化合物のIRスペクトル 1)	1, 2
4	//	赤外吸収スペクトル(種々の有機化合物のIRスペクトル2)	1, 2
5	//	核磁気共鳴スペクトル(測定の原理)	3-10

1	5	
	-	-
		E
3		
ł		
1	r	긤

回数	担 当	内 容	対応 (SBOs)
6	//	核磁気共鳴スペクトル(積分、化学シフト)	3-10
7	//	核磁気共鳴スペクトル(スピン-スピン分裂、結合定数)	3-10
8	//	核磁気共鳴スペクトル(種々の有機化合物のNMRスペクトル 1)	3-10
00	//	核磁気共鳴スペクトル(種々の有機化合物のNMRスペクトル 2)	3-10
10	//	核磁気共鳴スペクトル(種々の有機化合物のNMRスペクトル3)	3-10
11	//	マススペクトル(測定の原理、分子イオン、フラグメントイオン、同位体ピーク)	11-17
12	//	マススペクトル(フラグメンテーションパターン)	11-17
13	//	マススペクトル(種々の有機化合物のマススペクトル)	11-17
14	//	総合演習(試験)	総合演習(試験)

授業で行っている工夫: 出来るだけわかりやすく、丁寧に解説している。

モデル・コアカリ:本講義は、「化学系薬学を学ぶ」の内、C-4 化学物質の性質と反応の(4) 化学物質の構造決キュラムとの関連 定に相当し、1H NMR、IR、MS スペクトルの概要、測定方法、及びスペクトル解析し、構造

決定が出来るようになることを目標としている。

成 績 評 価 方 法:1) 形成的評価 a) 知識:演習問題を適時行う。

c) 態度:受講態度および提出物の内容から、適時フィードバックする。

2) 総括的評価 a) 知識: 定期試験と受講態度で評価する。

c)態度:1)-cの該当項目に不備がなければ合とする。

教 書:マクマリー有機化学第7版(上)(J. McMurry著 伊東ら訳 東京化学同人) プリント

オフィスアワー: 三巻、横須賀 原則的にいつでも可であるが、事前に予約することが望ましい 研究2号館408

古石 原則的にいつでも可であるが、事前に予約することが望ましい 研究2号館

306。

所属教室:三巻、横須賀 漢方資源応用学教室 研究2号館4階408

古石 機能性分子設計学教室 研究2号館3階306

植物薬品学 Pharmacognosy

孝一(A·B、G·H)

学年 第2学年 科目分類 必修 前期·後期 前期 単位 1

竹谷

講師 黒田 明平(C·D、E·F)

学習目標 (GIO)

教 授

日本薬局方に収載されている主として植物性医薬品のうち、国家試験に頻出する重要なものについて理解するために、基原植物の産地、性状、薬用部位、薬効、薬効成分などに関する基礎的知識を修得する。また、植物性医薬品が古来からの漢方薬のみならず、現代医療においても重要であることを理解するために、最近の話題、研究成果、植物性医薬品の発展経緯などに関する基礎的知識も修得する。なお、漢方系生薬についての詳細な解説は2年後期の漢方薬物学、成分の化学と確認試験は3年前期の天然医薬品化学で講義する。

▋行動目標 (SBOs)

1	生薬の歴史について概説できる。
2	生薬の流通と生産について概説できる。
3	代表的な生薬の産地と基原植物の関係について、具体例を挙げて説明できる。
4	代表的な生薬を列挙し、その特徴を説明できる。
5	代表的な薬用植物の学名、薬用部位、薬効などについて列挙できる。
6	代表的な薬用植物に含有される薬効成分を説明できる。
7	動物、鉱物由来の医薬品について具体例を挙げて説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	竹谷、黒田	植物性医薬品と日本薬局方収載生薬について	1、2、3、4、 5、6、7
2	//	生薬の特殊性と正しい取扱いについて	1, 2, 3, 4
3	//	藻類、菌類、および裸子植物を基原とする生薬(カンテン、マクリ、ブクリョウ、ロジン、マオウ)について	1、2、3、4、 5、6
4~8	//	離弁花植物を基原とする生薬(ニンジン、オウレン、オウバク、 カンゾウ、ケイヒ、センナ、ウイキョウなど)について	1、2、3、4、 5、6
9~11	//	合弁花植物を基原とする生薬(ジギタリス、センブリ、ゲン チアナ、ロートコン、ウワウルシ、ホミカなど)について	1、2、3、4、 5、6
12	//	単子葉植物を基原とする生薬(アロエ、ハンゲ、ビンロウジ、 サフラン、ショウキョウなど)について	1、2、3、4、 5、6
13	//	動物・鉱物を由来とする生薬について植物から医薬品開発の 現状について	1、2、3、4、 5、6、7
14	//	本学薬用植物園での実地観察と調査	1、2、3、4、 5、6

授業で行っている工夫: 生薬の基となる植物(基原植物)や薬用植物を本学薬用植物園において観察し、学生の理解度を より深める。

Ι

モデル・コアカリ: C-7 自然が生み出す薬物(1)薬になる動植鉱物

キュラムとの関連 【生薬とは何か】

- 1) 代表的な生薬を列挙し、その特徴を説明できる。
- 2) 生薬の歴史について概説できる。
- 3) 生薬の生産と流通について概説できる。

【薬用植物】

- 2) 代表的な薬用植物の学名、薬用部位、薬効などを列挙できる。
- 3) 代表的な生薬の産地と基原植物の関係について、具体例を挙げて説明できる。
- 5) 代表的な薬用植物に含有される薬効成分を説明できる。

【植物以外の医薬資源】

1)動物、鉱物由来の医薬品について具体例を挙げて説明できる。

成 績 評 価 方 法: 2)総括的評価 a)知識:定期試験により判断する。なお、出席不良者に対しては受験停止の措置を講することがあるので注意すること。

教 科 書:パートナー 生薬学(指田、山崎、竹谷編、南江堂)

参考書:第15改正日本薬局方解説書(廣川書店)

カラーグラフィック薬用植物(滝戸、指田編、廣川書店)

オフィスアワー: 竹谷 原則的にいつでも可であるが、事前に予約することが望ましい。 天然医薬品化学教室 研究 1 号館 201 号

黒田 原則的にいつでも可であるが、事前に予約することが望ましい。 漢方資源応用学教室 研究2号館408号

所属教室: 竹谷 天然医薬品化学教室 研究 1 号館 201号

黒田 漢方資源応用学教室 研究2号館408号

教員からの一言: 植物薬品学は、薬学部に入学して初めての生薬、薬用植物に関する講義である。本講義は、2年後期の漢方薬物学、3年前期の天然医薬品化学につながる重要な科目なので、予習復習を怠らず、聴講すること。

有機化学Ⅳ □

宏明 (A·B、C·D)

Organic Chemistry IV

学 年 **第2学**年 科目分類 **必** 修 前期·後期 後 期 単 位 **1**

講師

学習目標 (GIO)

准教授

官能基が有機化合物に与える効果を理解するために、水酸基、カルボニル基などの官能基を有する有機化合物について、反応性およびその他の性質に関する基本的知識を修得する。さらに、個々の官能基を導入、変換するために、それらに関する基本的知識を修得する。

釜池 和大 (E·F、G·H)

▋行動目標 (SBOs)

宮岡

-	
1	アルコール類の代表的な性質と反応を列挙し、説明できる。
2	アルコール類の代表的な合成法について説明できる。
3	フェノール類の代表的な性質と反応を列挙し、説明できる。
4	フェノール類の代表的な合成法について説明できる。
5	エーテル類の代表的な性質と反応を列挙し、説明できる。
6	エーテル類の代表的な合成法について説明できる。
7	エポキシド類の開環反応における立体選択性と位置選択性を説明できる。
8	チオール類およびスルフィド類の代表的な性質と反応を列挙し、説明できる。
9	チオール類およびスルフィド類の代表的な合成法について説明できる。
10	アルデヒド類およびケトン類の性質と代表的な求核付加反応を列挙し、説明できる。
11	アルデヒド類およびケトン類の代表的な合成法について説明できる。
12	カルボン酸の代表的な性質と反応を列挙し、説明できる。
13	カルボン酸の代表的な合成法について説明できる。
14	アルコール、フェノール、カルボン酸などの酸性度を比較し説明できる。
15	アルコール、フェノール、カルボン酸などの酸性度に影響を及ぼす因子を列挙し、説明できる。
16	官能基を有する化合物をIUPACの規則に従って命名できる。

•						
回数	担 当	内 容	対応 (SBOs)			
1	宮岡、釜池	アルコールとフェノールの命名法および性質	1、3、14、15、 16			
2~3	//	アルコールの合成法と反応	1, 2			
4	//	フェノールの合成法と反応	3、4			
5~6	//	エーテルとエポキシドの命名法、性質、合成法および反応(開 裂反応、開環反応)	5, 6, 7, 16			
7	//	チオールとスルフィドの命名法、合成法および反応	8, 9, 16			
8	//	アルデヒドとケトン:カルボニル基の性質、アルデヒドとケトンの命名法および合成法	10、11、16			
9~11	//	アルデヒドとケトンの反応:酸化、求核付加反応	10			
12	//	カルボン酸の構造と性質(解離、酸性度)および命名法	12、14、15、16			
13	//	 カルボン酸の合成法と反応	12, 13			

授業で行っている工夫: あらかじめ目標とするキーワードを提示し、目標を明確にしている。講義内容をまとめた資料の

配布、小テストによる演習、授業内容に関連した国家試験の問題の解説等を行い、理解を深める

よう努めている。

授業内容

モデル・コアカリ: C4 化学物質と性質と反応(3) 官能基

キュラムとの関連 C5 ターゲット分子の合成(1)官能基の導入・変換(2)複雑な化合物の合成

成 績 評 価 方 法:1) 形成的評価 a) 知識:適宜小テストを行う。c) 態度:受講状況(出欠等)を記録する。

2) 総括的評価 a) 知識: 定期試験 c) 態度: 受講態度(出欠等) を加味して総合評価する。

教 科 書:マクマリー有機化学 第7版(上、中、下)(J. McMurry著 伊藤ら訳 東京化学同人)

参考: 有機反応機構(P. Svkes 著 久保田尚志 訳 東京化学同人)

有機化学 基礎の基礎(山本嘉則 編著 化学同人)

最新 全有機化合物名称のつけ方(廖 春栄 著 三共出版)

困ったときの有機化学(D.R. クライン 著 竹内敬人、山口和夫 訳 化学同人)

電子の動きでみる有機反応のしくみ (奥山 格、杉村高志 著 東京化学同人)

オフィスアワー:いつでも可。 但し、要予約。

所属教室: 宮岡 宏明 生物分子有機化学教室 研究2号館2階205

釜池 和大 生物分子有機化学教室 研究2号館2階205

生物有機化学 ^{学 年 第2学年 科目分} ^{教 授 林 良雄 (A · B, C ·}

Bioorganic Chemistry

学年 第2学年 科目分類 必修 前期・後期後期 単位 1

教授 林良雄(A·B、C·D)

准教授 土橋 保夫 (E·F、G·H)

学習目標 (GIO)

糖質、アミノ酸、タンパク質、脂質、核酸は生体内で重要な役割を果たしている。これらの生体 関連物質の生体内挙動を分子レベルでの反応として理解するためには、その化学的な性質を把握 していることが必須である。本講義では、上記の生体分子の化学的特性を有機構造・反応論を基 に解説する。

┃ 行動目標 (SBOs)

1	単糖および多糖類の基本構造を概説できる。	
2	グルコースの構造、化学的性質を説明できる。	
3	グルコース以外の単糖類の構造、化学的性質を説明できる。	
4	二糖の種類、構造、化学的性質を説明できる。	
5	代表的な多糖の構造を説明できる。	
6	アミノ酸を列挙し、その構造に基づいて化学的性質を説明できる。	
7	タンパク質の高次構造を規定する結合(アミド基間の水素結合、ジスルフィド結合など)および相互作用に ついて説明できる。	
8	生体膜を構成する脂質の化学構造の特徴を説明できる。	
9	核酸塩基の構造を書き、水素結合を形成する位置を示すことができる。	
10	DNAの構造について説明できる。	
11	RNAの構造について説明できる。	

回数	担 当	内 容	対応 (SBOs)
1	 林、土橋	生体関連物質の構造およびその役割についての概説	1、6、8、10、 11
2~3	//	単糖の命名、Fischer投影式、Haworth投影式	1, 2, 3
4~5	//	単糖の立体配座解析および配糖体について	1、2、3
6	//	オリゴ糖、多糖の構造と性質	4, 5
7	//	アミノ酸の構造と性質	6
8~9	//	アミノ酸側鎖のpKaおよび等電点と電気泳動	6
10	//	アミノ酸分析、Edman分解、ペプチド結合の特性	7
11	//	タンパク質の高次構造	7
12	//	脂質の構造と性質	8
13	//	核酸の構造と性質	9、10、11

選択科

XI 実習科目

授業で行っている工夫: 本講義を理解する上で必須な基礎有機化学の復習を含めながら授業を進めている。また、体系的な理解を深めるために、各論と基本原理の関連に重点を置いた解説を行っている。

モデル・コアカリ: C-6 (1) 生体分子のコアとパーツ

キュラムとの関連

成 績 評 価 方 法: 1) 形成的評価 a) 知識: 適時思考を要する問題を紹介する。

c) 態度:授業態度を評価する。

2) 総括的評価 a) 知識: 試験の結果で判定する。

c) 態度: 1-c) に不備がなければ合とする。

教 **書**:マクマリー有機化学第7版(下)J. McMurry著(伊東他訳 東京化学同人)[土橋 担当クラス]

生命系の基礎有機化学 赤路健一・福田常彦著(化学同人) [林 担当クラス]

参考 書:生体分子の化学(相本、赤路著 化学同人)

ライフサイエンスの有機化学(樹林、秋葉著 三共出版)

オフィスアワー:いつでも可。 但し、要予約。

所属教室:林 薬品化学教室 研究2号館3階305

土橋 薬学基礎実習教育センター 教育1号館2階1205

漢方薬物学 Kampo Medicine

学年 第2学年 科目分類 必修 前期·後期後期 単位 1

教 授 **三巻 祥浩** (A·B、C·D、E·F、G·H)

】学習目標 (GIO)

漢方の特質と証、陰・陽、虚・実、気・血・水など漢方独自の基礎概念、漢方処方でのみ用いられる生薬の成分と薬理活性、重要な健康保険適応漢方処方とその臨床応用、漢方薬の使用上の注意、副作用と薬物相互作用を理解する。医師が西洋医学的な治療に併せて漢方薬を処方した際に、その処方目的を理解し、内容について医師、患者に適切な漢方医薬品情報を提供できるまでの基礎知識を習得する。

┃ 行動目標 (SBOs)

1	漢方の歴史を概説できる。	
2	医療における漢方の重要性を概説できる。	
3	漢方の特徴について概説できる。	
4	漢方薬と民間薬との相違について説明できる。	
5	漢方薬と西洋薬の基本的な違いを説明できる。	
6	漢方の診断法について概説できる。	
7	漢方の「証」の概念について説明できる。	
8	漢方処方と「証」との関係について説明できる。	
9	漢方処方に配合されている代表的な生薬を例示し、その有効成分を説明できる。	
10	代表的な漢方処方の適応症と配合生薬を説明できる。	
11	漢方エキス製剤の特徴を煎液と比較して列挙できる。	
12	代表的な疾患に用いられる漢方処方について説明できる。	
13	代表的な疾患に用いられる漢方処方の使用上の注意について説明できる。	
14	漢方薬の注意すべき副作用を列挙し、説明できる。	
15	漢方薬と西洋薬との注意すべき相互作用を列挙し、説明できる。	

回数	担 当	内 容	対応 (SBOs)
1	三巻	漢方の歴史と特質	1、2、3
2	//	漢方の基礎概念	4、5、11
3	//	漢方の診察法と証の概念	6、7
4	//	主要漢方生薬各論:人参、黄耆、半夏、大棗、生姜、芍薬、甘草、 附子、茯苓、朮、柴胡、黄芩、石膏など	4、9
5	//	桂枝湯とその関連処方:桂枝湯、葛根湯、小青竜湯、桂枝加 芍薬湯、小建中湯、桂枝加竜骨牡蛎湯など	8、10
6	//	柴胡剤:小柴胡湯、柴胡桂枝湯、四逆散、大柴胡湯、柴胡桂 枝乾姜湯、柴胡加竜骨牡蛎湯、乙字湯など	8、10

XI

回数	担 当	内 容	対応 (SBOs)
7	//	利水剤を中心とした処方:六君子湯、人参湯、真武湯、五苓散、 猪苓湯など	8、10
8	//	婦人科用薬と駆瘀血剤: 当帰芍薬散、桂枝茯苓丸、加味逍遙散、 桃核承気湯、温経湯など	8、10
9	//	その他の漢方処方: 芍薬甘草湯、大黄甘草湯、十全大補湯、 大建中湯、麦門冬湯など	8、10
10	//	漢方薬の臨床応用例(1) インフルエンザと麻黄湯、肺癌と 麦門冬湯など	12, 13
11	//	漢方薬の臨床応用例(2) 慢性頭痛と呉茱萸湯、イレウスと 大建中湯など	12, 13
12	//	漢方薬の臨床応用例(3) 上腹部不定愁訴と四逆散、不眠症 と加味帰脾湯など	12, 13
13	//	漢方薬の臨床応用例(4) 気管支喘息と柴朴湯、ネフローゼ 症候群と柴苓湯など	12、13
14	//	漢方エキス剤の使用上の注意と副作用	14、15

授業で行っている工夫: 講義プリントに講義 1 回ごとのキーワードを示し、学生がプリントに説明事項や板書事項を書き 込む形式で講義を進める。最終的に、学生各自のオリジナル講義ノートが完成することになり、 それをもとに復習をすれば、重要なポイントを見落とすことなく知識の定着に繋がるようにして いる。また、適宜実物の生薬や漢方薬を提示し、理解を深めるように努めている。

モデル・コアカリ: C7 自然が生み出す薬物 (3) 現代医療の中の生薬・漢方薬

キュラムとの関連 【漢方医学の基礎】

- 1) 漢方医学の特徴について概説できる。
- 2) 漢方薬と民間薬、代替医療との相違について説明できる。
- 3) 漢方薬と西洋薬の基本的な利用法の違いを概説できる。
- 4) 漢方処方と「証」との関係について概説できる。
- 5) 代表的な漢方処方の適応症と配合生薬を説明できる。
- 6) 漢方処方に配合されている代表的な生薬を例示し、その有効成分を説明できる。

【漢方処方の応用】

- 1) 代表的な疾患に用いられる生薬及び漢方処方の応用、使用上の注意について概説できる。
- 2) 漢方薬の代表的な副作用や注意事項を説明できる。

成 精 評 価 方 法: 1) 形成的評価 a) 知識:項目ごとに練習問題や課題を課し、フィードバックを行う。

- c) 態度:中間時期において出席不良者に対して、警告を行い指導する。
- 2)総括的評価 a) 知識: 定期試験、出席点を総合して評価する(出席不良者に対しては、期末 試験の受験を停止する)。

教 科 書:薬学生のための漢方薬入門第2版改定版(指田、三巻著、廣川書店)

参考: 現代医療における漢方薬(日本生薬学会監、南江堂)

漢方の第一歩(並木監、渡辺著、南江堂)

健保適用エキス剤による漢方診療ハンドブック第3版(桑木著、創元社)

今日の治療薬2011 (水島編、南江堂)

オフィスアワー: 三巻祥浩 原則的にいつでも可であるが、事前に予約することが望ましい。

研究2号館4階408教授室

所属教室:漢方資源応用学教室研究2号館4階408教授室

特 記 事 項: 教科書のほか、生協にて講義プリントを購入して下さい。

教員からの一言:前期の実習で行った内容を、より理論的に解説していきます。

機能形態学Ⅲ

Human Anatomy and PhysiologyIII

単 位

1

 学年
 第2学年
 科目分類
 必修
 前期・後期
 前期

 教授
 馬場
 広子
 機能形態学教室(A・B、C・D、E・F、G・H)

准教授 **山口 宜秀** (A·B、C·D、E·F、G·H)

講師 林 明子(A·B、C·D、E·F、G·H)

学習目標 (GIO)

ヒトの成り立ちを個体、器官、細胞レベルで理解し、ホメオスタシス(恒常性)の維持機構を理解するために、機能形態学 I (1年前期)、II (1年後期)、II (2年前期)によって生命体の構造とダイナミックな機能調節機構に関する基本的知識を修得する。

▍行動目標 (SBOs)

1	腎臓、膀胱などの泌尿器系臓器について機能と構造を関連づけて説明できる。
2	尿の生成機構、尿量の調節機構を説明できる。
3	体液の調節機構を説明できる。
4	血液、肺、腎における酸塩基平衡の調節を説明できる。
5	血液のpH変化と酸素解離曲線との関係について説明できる。
6	皮膚の構造と働きを説明できる。
7	皮膚の付属器とそれぞれの働きを説明できる。
8	体温の調節機構を説明できる。
9	脳下垂体、甲状腺、副腎などの主な内分泌系臓器の機能と構造を関連づけて説明できる。
10	主要なホルモンの分泌機構および作用機構を説明できる。
11	血糖の調節機構を説明できる。
12	生殖腺と性ホルモン分泌調節を関連づけて説明できる。
13	性ホルモンの種類とそれぞれの働きを説明できる。
14	ヒトの成り立ちとその働きを総合的に関連づけ、ホメオスタシスの維持機構を説明できる。

回数	担 当	内 容	対応 (SBOs)
1	馬場	泌尿器系(1)	1, 2
2	//	泌尿器系(2)	1, 2
3	//	泌尿器系(3)	1, 2
4	//	体液調節、イオンバランス、血圧調節、酸塩基平衡(1)	3、4、5
5	//	体液調節、イオンバランス、血圧調節、酸塩基平衡(2)	3、4、5
6	林	皮膚	6、7
7	//	体温調節	8
8	ЩП	内分泌系(1)	9, 10, 11
9	//	内分泌系(2)	9, 10, 11

選択科次

回数	担 当	内 容	対応 (SBOs)
10	//	生殖器系(1)	12、13
11	//	生殖器系(2)	12, 13
12	馬場・山口・林	ホメオスタシス (まとめ)	14
13	//	ホメオスタシス (まとめ)	14

授業で行っている工夫: あらかじめ目標とするキーワードを提示し、目標を明確にしている。予習や復習に役立つ講義資料を作成している。

モデル・コアカリ: C8 生命体の成り立ち (1) ヒトの成り立ち、(3) 生体の機能調節

キュラムとの関連

成績評価方法: 定期試験の結果に受験態度(小テスト・出席)を加味して総合評価する。なお、出席不良者に対しては受験停止の措置を講ずることがあるので注意すること。また、定期試験の結果が極めて悪

い場合には、再試験の受験を認めないことがある。

教 科 書:新しい機能形態学―ヒトの成り立ちとその働き―(小林、馬場、平井編 廣川書店)

参考 書:入門人体解剖学(藤田著南江堂)

標準生理学(本郷、広重編 医学書院)

オフィスアワー:いつでも可。 ただし、要予約。

所属教室:馬場、山口、林機能形態学教室研究1号館202号室

教員からの一言: ここで得られる知識は薬理学や病態生理学などに直結します。予習・復習をするだけで講義のおもしろさは変わりますので、必ず実行してください。

生化学Ⅱ

今田

啓介

Biochemistry II

生化学·分子生物学(C·D、G·H)

学 第2学年 科目分類 前期・後期 前 必修 伊東 教 授 晃 生化学·分子生物学(C·D、G·H) 邦男 臨床ゲノム生化学 (A·B、E·F) 准教授 大山 教 臨床ゲノム生化学(A·B、E·F) 助 袁 博

学習目標 (GIO)

年

助 教

> 生物(ヒト)における生命活動は、生体に摂取された物質あるいは生体を構成する成分の、化学 反応から生じる生体エネルギーにより支えられていると捉えることができる。当該科目では、生 化学Ⅰで学んだ酵素、糖質代謝およびエネルギー産生機構に加えて、糖質と並ぶ重要な生体構成 成分であるアミノ酸(タンパク質)および脂質の代謝とその調節について、基本的な知識を学習 する。さらに、生化学Iで習得した代謝に関する知識も含めて、生体内における代謝の総合的な 調節機構について学習する。

期

単 位 1

▍行動目標 (SBOs)

1	脂質の消化と吸収について説明できる。
2	脂質の運搬に関わる血漿リポタンパク質を挙げて、その特性と役割について説明できる。
3	脂肪酸の酸化(eta 酸化)について説明できる。
4	ケトン体の生成とその生体内利用について説明できる。
5	脂肪酸の生合成と変換について説明できる。
6	アラキドン酸代謝経路とその阻害物質について説明できる。
7	グリセロリン脂質の生合成経路について説明できる。
8	コレステロールの生合成経路と代謝について説明できる。
9	貯蔵脂肪からの脂肪酸の動員機構について説明できる。
10	脂質の発現異常や蓄積あるいは代謝異常により生じる代表的な疾患を挙げ、その病態を概説できる。
11	タンパク質の消化と吸収について説明できる。
12	アミノ基の転移・除去(酸化的脱アミノ化)について説明できる。
13	ケト原性、糖原性アミノ酸を分類し、それらのクエン酸回路中間体との関連性について説明できる。
14	アンモニアの代謝機構について説明できる。
15	尿素回路(オルニチン回路)について説明できる。
16	アミノ酸が関与する特殊な生体成分や生理活性物質の生合成について説明できる。
17	芳香族アミノ酸の代謝について説明できる。
18	分枝アミノ酸の代謝について説明できる。
19	生理活性アミンの生合成経路について説明できる。
20	アミノ酸の代謝異常により生じる代表的な疾患を挙げ、その病態を概説できる。
21	各生体成分の代謝系路の相互的関連性について概説できる。
22	代謝の調節に関して例を挙げて説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	今田、袁	脂質の消化、吸収および運搬	18、19、27
2	//	脂肪酸のβ酸化、ケトン体の生成とその利用	20、21、27
3	//	脂肪酸の生合成と変換	22、23、26、27
4	//	リン脂質の代謝、コレステロールの代謝	24、25、27
5	伊東、大山	タンパク質の消化と吸収	6
6	//	アミノ酸代謝:アミノ基の転移・除去反応	7
7	//	アミノ酸代謝と糖代謝との関連	7、8
8	//	尿素回路	9、10、11
9	//	アミノ酸が関与する特殊な生体成分および生理活性物質の生 合成とその機能	11, 15
10	//	芳香族アミノ酸の代謝、分枝アミノ酸の代謝	12、13、15
11	//	生理活性アミンの生合成	14、15
12	//	生体における様々な代謝の関連性	16、17
13	//	代謝の総合的調節機構	16、17

授業で行っている工夫: 1.1年生前期の「生物学」および「細胞生物学」、1年生後期の「生化学Ⅰ」、2年生の「生化学Ⅱ」 および「生化学Ⅲ」さらに3年生の「バイオ医薬品とゲノム情報」を生物系の関連科目、すな わち基礎から応用までステップアップする講義ととらえ一貫性を重視し講義の理解度を上げる ことを工夫している。一方、限られた講義時間を効率よく利用するために講義の重複部分につ いても必要・不要等の調整をおこなっている。

- 2.Web クラスを開設しており、当該講義科目の前にうけた講義に関して理解度チェック・復習が 可能なように「要点」や「国試問題」等を公開している。
- 3.Web クラスでは、講義に使用する ppt 原稿の一部についても公開している。
- 4.CBT 想定問題中の、本科目に該当する問題をピックアップし、プリントとして配布している。 授業に時間的余裕があれば簡単な解説を行っている。

モデル・コアカリ: C9 生命をミクロに理解する

- キュラムとの関連 (1) 細胞を構成する分子
- 【脂質】【アミノ酸】【飢餓状態と飽食状態】
- (5) 生理活性分子とシグナル分子 【ホルモン】(一部) 【オータコイドなど】(一部)

【細胞内情報伝達】(一部)

成績評価方法:定期試験の成績および出席状況を加味して総合的に評価する。なお、出席不良者に対しては受験 停止の措置を講ずる。

科 書:薬学領域 生化学(伊東 晃、藤木博太編集 廣川書店) 教

老 書:ハーパー・生化学(上代淑人監訳 丸善)

ロスコスキー生化学(田島陽太郎監訳 西村書店)

マッキー生化学(市川 厚監修、福岡伸一監訳 化学同人)

オフィスアワー: 原則的にいつでも可。但し、要予約。

所属教室:伊東生化学·分子生物学教室研究2号棟6階605号室

大山 臨床ゲノム生化学教室 研究2号棟6階606号室

臨床ゲノム生化学教室 研究2号棟6階606号室

今田 生化学·分子生物学教室 研究2号棟6階605号室

微生物学Ⅱ Microbiology II

学年 第2学年 科目分類 必修 前期·後期 前期 単位 1

准教授 **野口 雅久**(A·B、C·D、E·F、G·H)

学習目標 (GIO)

微生物の中には、病気を起こすものから薬を産生するものまでいろいろな微生物が存在する。微生物学 I では小さな生き物たちの基本的概念を習得した。微生物によって引き起こされる病気(感染症) とその治療や予防を理解するには、さらに個々の微生物の特徴を知ることが必要である。そこで、微生物学 II では、薬学において大切な細菌、ウイルス、原虫・寄生虫を中心とした微生物の細胞構造と形態および細胞の機能や生活史などに関する知識を習得する。さらに、微生物の汚染を予防するために必要な滅菌と消毒および感染症の治療薬について基本的知識を習得する。

┃ 行動目標 (SBOs)

1	細菌の構造と増殖機構を説明できる。
2	細菌の系統的分類について説明でき、主な細菌を列挙できる。
3	細菌の同定に用いる代表的な試験法について説明できる。
4	細菌の遺伝子伝達(接合、形質導入、形質転換)について説明できる。
5	代表的な細菌毒素の作用を説明できる。
6	グラム陽性菌と陰性菌、好気性菌と嫌気性菌の違いを列挙できる。
7	腸内細菌の役割について説明できる。
8	マイコプラズマ、リケッチア、クラミジア、スピロヘータ、放線菌についてその特性を説明できる。
9	代表的なウイルスの構造と増殖過程を説明できる。
10	代表的な動物ウイルスの培養法、定量法について説明できる。
11	ウイルスの分類法について概説できる。
12	ウイロイドやプリオンについて説明できる。
13	主な原虫、寄生虫の生活史について説明できる。
14	滅菌、消毒、防腐および殺菌、静菌の概念を説明できる。
15	主な消毒薬を適切に使用する。
16	抗菌薬を作用点に基づいて分類できる。
17	代表的な抗菌薬の基本構造を示すことができる。

▋授業内容

回数	担 当	内 容	対応 (SBOs)
1	野口	細菌の細胞構造と増殖機構	1
2	//	微生物の遺伝子伝達(接合、形質導入、形質転換)と毒素に ついて	4、5
3	//	細菌の染色、分類・同定について	2, 3
4	//	主なグラム陽性菌の特徴	6
5	//	主なグラム陰性菌の特徴	6

X
実
習
私

回数	担 当	内 容	対応 (SBOs)
6	//	嫌気性菌と腸内細菌	6、7
7	//	マイコプラズマ、リケッチア、クラミジア、スピロヘータ、 放線菌の構造と増殖	8
8	//	ウイルスの分類、構造と増殖	9、10、11
9	//	プリオンとウロイドの構造と増殖	12
10	//	原虫と寄生虫の形態と生活史	13
11	//	感染症治療薬の概要	16、17
12	//	主な抗菌薬の構造的分類と作用点	16、17
13	//	滅菌、消毒、防腐および殺菌、静菌について	14、15

授業で行っている工夫: 微生物は肉眼で見ることが難しい生物です。そこで、絵・写真・画像などを多用し、眼に見える形で講義をしています。さらに、新聞やTYのニュースなど最新の微生物の話題を織り交ぜ、できる限り興味ある講義にすることを心がけています。また、講義終了10分前には、講義で重要なことについて学生に質問し、モチベーションを高めています。さらに、勉強の糸口として、講義の資料や練習問題をWebClassで公開しています。

モデル・コアカリ: C8 生命体の成り立ち (4) 小さな生き物たち キュラムとの関連 C14 薬物治療 (5) 病原微生物・悪性腫瘍と戦う

成績評価方法: 1) 形成的評価 a) 知識: 講義の終了前に、質問を行い重要点の再確認を行っている。また、 WebClassに練習問題を掲載し、学習の補助としている。

2)総括的評価 a) 知識:定期試験の結果および出席率を加味して総合的に評価する。出席不良者(全講義の1/3以上の欠席)に対しては、受験停止の措置を講ずることがある。欠席や遅刻等において、適切な理由がある場合は欠席届等を提出すること。

教 科 書:補助プリント

新しい微生物学 第3版 (廣川書店)

参考: 戸田新細菌学(吉田 眞一、柳 雄介編 南山堂)

ブラック微生物学(林 英生ら監訳 丸善)

薬科微生物学 第5版(加藤 文男、西月朱賓編著 丸善)

医科ウイルス学 第3版(高田賢蔵編集 南江堂)

消毒と滅菌のガイドライン(小林 寛伊編集 へるす出版)

消毒薬テキスト 吉田製薬 (http://www.yoshida – pharm.com/text/index.html)

オフィスアワー:野口 いつでも可。 病原微生物学教室

所属教室:野口病原微生物学教室研究室2号館5階516号室

特 記 事 項:講義プリントや資料はWebClassよりダウンロードしてください。

教員からの一言: 地球全体でインフルエンザ、結核、ヒト免疫不全ウイルス感染症、マラリアなどの感染症の脅威 に晒されています。微生物学Ⅱは、感染症の原因と予防・治療に対する初歩的な知識を学ぶ講義 です。

配付する資料には、講義内容をまとめた図表や練習問題が含まれていますので予習や復習に役立ててください。分からないことは積極的に質問してください。

生理活性物質概論 -薬の効き方入門-

Introduction to Pharmacology

学 年	第2学年	科目分類	必 修	前期・後期	前期	単 位	1
教 授	立川 英一	内分泌・神経	経薬理学(A	\cdot B、C \cdot D、	$E \cdot F \cdot G \cdot H$		
准教授	田村 和広	内分泌・神経	経薬理学(A	\cdot B、C \cdot D、	$E \cdot F \cdot G \cdot H$		
助教	沓掛 真彦	内分泌・神経	経薬理学(A	\cdot B、C \cdot D、	$E \cdot F, G \cdot H$		

学習目標 (GIO)

薬物療法は疾病の治療において、枢要な手段である。"なぜ薬がさまざまな疾患の治療に用いられるのか"これを理解するため、薬物の生体への作用、及び生体の薬への作用、すなわち薬と生体の相互作用を明らかする「薬理学(薬の効き方)」を修得することが必須である。ここでは"生理活性物質"の作用をとおして、2学年後期からスタートする「薬の効き方」への学習基盤を整え、薬物療法の基礎を確立する。神経伝達物質、ホルモン、サイトカイン、オータコイドなどの生理活性物質の受容体、作用、作用発現機序、医療への応用についての基本的知識を学ぶ。また薬理学的考え方も身につける。

┃ 行動目標 (SBOs)

•	
1	薬物の固有活性、アゴニスト、アンタゴニストについて説明できる。
2	薬物の興奮効果、抑制効果についてアセチルコリン(ACh)を例に挙げて解説できる。
3	薬物の用量と作用の関係を説明できる。特に薬物の拮抗作用(薬理学的拮抗など)について薬物例と拮抗部 位を挙げて解説できる。
4	薬理作用に影響を及ぼす要因について概説できる。
5	細胞膜受容体の型(種類)とその特徴について概説できる。
6	主要なGタンパク質の機能と代表的薬物受容体を解説できる。
7	細胞膜受容体と細胞内情報伝達系との連関を説明できる。
8	細胞内のCa ²⁺ レベルの調節と細胞応答について概説できる。
9	神経伝達物質、オータコイド、サイトカイン、ホルモンの定義と生体での役割を概説できる。
10	末梢神経系(自律神経系、並びに体性神経系)の分類、及びその形態と機能を説明できる。
11	代表的な神経伝達物質の合成と分解経路を解説できる。
12	アドレナリン(Ad)受容体(α 1~2、 β 1~3)、並びにムスカリン性とニコチン性アセチルコリン(ACh) 受容体(M 1~3、 N_N と N_M)を解説できる。
13	末梢神経系の主な支配臓器(眼、気管支、血管、心臓、消化管、骨格筋、肝臓等)における神経伝達物質(ノルアドレナリン(NA)とAChの受容体刺激効果を解説できる。
14	NA、Ad、並びにイソプレナリンの構造活性相関を解説できる。
15	Ad反転やAChのニコチン様作用の薬理学的観察法を解説できる。
16	アンギオテンシンの生成と代謝、生理作用、疾患との関連、さらに、合成抑制薬と受容体拮抗薬の臨床応用 を理解している。
17	代表的オータコイドのうち、ヒスタミンとセロトニンについてそれらの生成経路、受容体とその刺激効果(生理、薬理作用)を概説できる。
18	ヒスタミン受容体拮抗薬とセロトニン受容体作動薬・拮抗薬の臨床応用と薬物特性を概説できる。
19	エイコサノイド(プロスタグランジン:PG、ロイコトリエン:LT)の生成過程と生理作用を知っている。
20	PG受容体作動薬、LT受容体拮抗薬の臨床応用を説明できる。
21	内分泌臓器について、構造とホルモンを関連づけて概説できる。
22	代表的なホルモンの作用と作用機序、また疾患との関連を説明できる。

21, 22

回数	担当	内 容	対応 (SBOs)	
1~2	立川	1.アゴニスト、アンタゴニストの概念、薬物の興奮・抑制効果、細胞膜受容体と細胞内受容体 2.薬物の用量と作用の関係、特に薬理学的拮抗作用、薬理作用に影響を及ぼす要因	1 ~ 4	
3~4	//	3.細胞膜受容体とGタンパク質及び代表的薬物受容体との関連 4.細胞内情報伝達系、細胞内Ca2+レベルの調節と細胞応答	5~9	
5, 6	//	(自律神経系に作用する薬物の基礎) 5.末梢神経系の形態的特徴と機能 6.神経伝達物質の生成と分解経路	10, 11	
7~9	//	7.アドレナリン(Ad)受容体、ムスカリン性とニコチン性アセチルコリン(ACh)受容体の特徴と機能8.ノルアドレナリン(NA)、アセチルコリン(ACh)の受容体刺激効果9.NA、Ad、イソプレナリンの構造活性相関と薬理学的作用の相違、Ad 反転とAChのニコチン様作用	12~15	
10	沓掛	10. 神経伝達物質、オータコイド、サイトカイン、及びホルモンの概念とオータコイド関連薬(レニン-アンギオテンシン-アルドステロン系)	16	
11~13	田村	オータコイド関連薬(ヒスタミン、セロトニン、エイコサノイド) 11.ヒスタミンの作用と受容体、受容体拮抗薬 12.セロトニンの作用と受容体、受容体作動薬・拮抗薬の医療用途	17~20	

授業内容

14

立川

授業で行っている工夫:本科目は機能形態学、生化学、並びに有機化学などの基礎薬学と病態学の知識を必要とするので、それら教科と関連づけながら授業をおこなう。自学自習を促すため、講義の予習と復習項目に関する簡単なレポート課題を提出してもらう場合もある。また、単元のまとめの意味で、小試験をおこなうこともある。

13. プロスタグランジン(PG)、ロイコトリエン(LT)の作用と受容体、

PG受容体作動薬、LT受容体拮抗薬の医療用途

14. 内分泌作用薬の基礎:ホルモン作用の概説

モデル・コアカリ: [生物系薬学を学ぶ] C9 生命をミクロに理解するにおける(5) 生理活性分子とシグナル分子、キュラムとの関連 +21 項目に対応。

[薬と疾病] C13 薬の効くプロセスのうち、[薬の作用]と[薬の副作用]、全10項目に相当。

成績評価方法: 1) 形成的評価 a) 知識:必要に応じて小試験をおこない評価すると同時に、学習で得られた知識を確認させる。

b) 技能:授業で質問し、答えさせる。

c) 態度:個々の受講態度を評価する。

2) 総合的評価 a) 知識: 定期試験と小試験の結果

b) 技能:該当しない

c) 態度: 出席の回数と受講態度

教 **科 書**:最新 薬の効き方 I (立川・田野中 編 愛智出版)、及び配布プリント

参考書:新しい機能形態学―ヒトの成り立ちとその働き―(小林、馬場、平井編、廣川書店)

医薬必修 生化学(伊東、畑山 編、廣川書店)

薬学生のための新臨床医学(市田、細山田 編、廣川書店)

New薬理学(第5版)(加藤、田中編、南江堂)

オフィスアワー: 立川 英一 都合が良ければ、いつでも可。 事前に連絡があれば確実です。

田村 和広 都合が良ければ、いつでも可。 沓掛 真彦 都合が良ければ、いつでも可。

所属教室:立川 英一内分泌·神経薬理学教室 研究2号館402号室

田村 和広 内分泌:神経薬理学教室 研究2号館404号室

沓掛 真彦 内分泌·神経薬理学教室 研究2号館404号室

特 記 事 項: あらかじめ授業を受ける前に講義予定項目のSBOを確認し、その部分の教科書範囲を読んでから 講義にのぞむ。また講義後の復習を必ずおこなう。

教員からの一言:本講義は単なる暗記科目ではないので、講義に関連する科目を系統づけて学習し、生体の様々な 生理機能と病態を理解することが必要である。

生化学Ⅲ □

BiochemistryIII

学 年 第2学年 科目分類 必 修 前期·後期 後 期 単 位 1

 教授
 豊田
 裕夫
 (C·D、E·F)

 准教授
 佐藤
 隆(A·B、G·H)

 助教
 博(C·D、E·F)

学習目標 (GIO)

生化学 I および II に引き続いて「核酸の代謝」、「セントラルドグマ」、「代謝の統合的調節」および「情報伝達」を分子レベルで理解するための基礎的知識を修得する。また、ヒトの体内における遺伝子の発現調節を中心として行われる基本的な生体反応および病態を理解するための基礎知識を修得する。

┃ 行動目標 (SBOs)

-	
1	核酸塩基の代謝(生合成と分解)を説明できる。
2	DNAの構造について説明できる。
3	RNAの構造について説明できる。
4	DNA鎖とRNA鎖の類似点を説明できる。
5	遺伝子発現に関するセントラルドグマについて概説できる。
6	ゲノムと遺伝子の関係を説明できる。
7	染色体の構造を説明できる。
8	DNAの複製過程について説明できる。
9	遺伝子の変異(突然変異)について説明できる。
10	DNAの修復過程について説明できる。
11	DNAからRNAへの転写について説明できる。
12	RNAのプロセシングについて説明できる。
13	転写の調節について、例を挙げて説明できる。
14	遺伝子の構造に関する基本的な用語(プロモーター、エンハンサー、エキソン、イントロンなど)を説明できる。
15	RNAからタンパク質への翻訳過程について説明できる。
16	リボソームの構造と機能について説明できる。
17	生体の代謝調節機構を具体的な例を挙げて説明できる。
18	細胞膜および細胞内受容体を介する情報伝達について具体例を挙げて説明できる。

回数	担 当	内 容	対応 (SBOs)
1~3	佐藤、袁	核酸の構造:DNAとRNAの構造	2~7
4~6	//	核酸の代謝(1)プリン・ピリミジン骨格の生合成と異化作用	1
7~8	豊田、佐藤	核酸の代謝(2)DNAの生合成(複製)機構と修復	8~10
9~10	//	核酸の代謝 (3) RNAの生合成(転写)機構と転写後修飾	11~13
11~12	//	タンパク質の生合成(翻訳)機構と翻訳後修飾	14~16

選年次

回数	担 当	内 容	対応 (SBOs)
13	袁、佐藤	代謝の統合的調節:酵素レベルでの調節、遺伝子レベルでの 調節、ホルモンによる調節	17
14	豊田、佐藤	情報伝達:受容体とシグナル伝達	18

- 授業で行っている工夫: 1.1年生前期の「生物学」および「細胞生物学」、1年生後期の「生化学Ⅰ」、2年生の「生化学Ⅱ」 および「生化学Ⅲ」、さらに3年生の「バイオ医薬品とゲノム情報」を生物系の関連科目、すな わち基礎から応用までステップアップする講義と捉え、一貫性を重視して講義の理解度を上げ ることを工夫している。一方、限られた講義時間を効率よく利用するために講義の重複部分に ついても必要・不要等の調整をおこなっている。
 - 2.生化学Ⅲの講義内容を理解するために、生物系関連科目(細胞生物学、生化学ⅠおよびⅡ)の 理解度チェック・復習をWebクラスにて実施している。
 - 3. 当該講義科目履修後にも継続して講義に関する理解度チェック・復習ができるようにWebク ラスでの理解度チェックテストを開設している。
 - 4.Web クラスを利用して、講義に使用する補助プリントおよび講義スライドの一部を配布して、 事前学習を可能にしている(佐藤担当クラス)。
 - 5.中間レポート提出などで授業内容の理解度を深める工夫をしている(豊田、袁担当クラス)。

モデル・コアカリ: C8 生命体の成り立ち(2)生命体の基本単位としての細胞、(3)生体の機能調節

キュラムとの関連 C9 生命をミクロに理解する(2)生命情報を担う遺伝子、(3)生命活動を担うタンパク質

- 2) 総括的評価 a) 知識: 定期試験の結果に受講態度(出席状況等)を加味して総合評価する。なお、 出席不良者に対しては受験停止の措置を講ずることがある。
- 書:薬学領域の生化学(伊東、藤木編 廣川書店) 教 科
- 参 考 書:生物系薬学Ⅱ 生命をミクロに理解する(日本薬学会編 東京化学同人)

成績評価方法: 1) 形成的評価 a) 知識: WebClass に提示した演習問題に毎週取り組む

ハーパー生化学(上代淑人監訳 丸善) 医薬 分子生物学(野島博著 南江堂)

マシューズ・ホルダ・アーハン カラー生化学(清水孝雄他監訳 西村書店)

マッキー生化学(市川厚監修、福岡伸一監訳 化学同人)

オフィスアワー: 豊田 原則的にいつでも可。 但し、要事前連絡。

> 佐藤 原則的にいつでも可。 但し、要事前連絡。

原則的にいつでも可。 但し、要事前連絡。

室: 豊田 臨床ゲノム生化学教室 研究2号棟6階 606号 所 属 教

佐藤 生化学·分子生物学教室 研究2号棟6階 605号

臨床ゲノム生化学教室 研究2号棟6階 606号

免疫学 Immunology

学年 第2学年 科目分類 必修 前期・後期後期 単位 1

教 授 **大野 尚仁** (E·F、G·H) 准教授 **安達 禎之** (A·B、C·D)

学習目標 (GIO)

生体はさまざまなしくみを用いて恒常性を維持している。これらのしくみの中で、病原微生物によってもたらされる感染症や悪性腫瘍などに対し、これを排除するために中心となって働くのは免疫機構(あるいは生体防御機構)である。この免疫機構・生体防御機構は原始的な生物からヒトまで広く備わっている。本講義では、主に高等動物の免疫機構について理解を深めるために、免疫機構のしくみやそれらを構成する組織、細胞、因子について学習する。さらに、感染、移植、アレルギーなど代表的な免疫関連の疾患について概要を学ぶ。免疫関連疾患については、3年次の臨床免疫で詳しく学ぶ。

┃ 行動目標 (SBOs)

1	自然免疫と獲得免疫の特徴とその違いを説明できる。
2	異物の侵入に対する物理的、生理的、化学的バリアーについて説明できる。
3	免疫に関与する組織と細胞を列挙できる。
4	免疫担当細胞の種類と役割を説明できる。
5	食細胞が自然免疫で果たす役割を説明できる。
6	抗体分子の種類、構造、役割を説明できる。
7	補体について、その活性化経路と機能を説明できる。
8	免疫系に関わる主なサイトカイン、ケモカインを挙げ、その作用を説明できる。
9	MHC抗原の構造と機能および抗原提示経路での役割について説明できる。
10	T細胞による抗原の認識について説明できる。
11	抗体分子およびT細胞抗原受容体の多様性を生み出す機構(遺伝子再構成)を概説できる。
12	クローン選択説を説明できる。
13	免疫反応の特徴(自己と非自己、特異性、記憶)を説明できる。
14	体液性免疫と細胞性免疫を比較して説明できる。
15	免疫反応における主な細胞間ネットワークについて説明できる。

▋授業内容

回数	担 当	内 容	対応 (SBOs)
1	大野・安達	はじめに、免疫機構全体の概説、講義の到達目標	1, 2
2	//	免疫組織(1)中枢リンパ組織、末梢リンパ組織、造血組織	3、4、5
3	//	免疫組織 (2) 粘膜面の免疫組織	3、4、5
4	//	免疫担当細胞(1)免疫担当細胞の種類	4, 5
5	//	免疫担当細胞(2) リンパ球と機能	4
6	//	免疫担当細胞(3)顆粒球、単球と機能	5

XI

選択科

)	
5	
)	
5	

回数 担当 内容 対応 (SBOs) 7 免疫担当細胞(4)免疫担当細胞の増殖、分化と活性化 3、4、5 // 8 // 抗原と抗体(1)抗原と抗体の基本構造 6 9 // 抗原と抗体(2)抗体のクラスと機能 6、11、12 7 10 補体 // 11 // サイトカインとケモカイン 8 12 // 免疫学的自己の確立と組織適合性抗原 9, 10 13 // 13, 14, 15 免疫応答 14 13, 14, 15 // 免疫疾患

授業で行っている工夫: あらかじめ目標とするキーワードを提示し、目標を明確にしている。前年度の講義資料はWeb公開しており、予習に役立てるようにしている。教科書への書き込みのチャンスを増やし、講義に集中できる工夫をしている。複数回のレポート提出を課し、"問題解決能力の醸成"に努めている。

モデル・コアカリ: C9 生命をミクロに理解する (5) サイトカイン・増殖因子・ケモカイン、

キュラムとの関連 C10 生体防御 (1) 身体をまもる

C14 薬物治療 (4) アレルギー・免疫疾患

成績評価方法: 1) 形成的評価 a) 知識: 小テスト、課題レポート、Webクラス講義資料などにより項目ごとに行う。

c) 態度:受講態度(出席状況等)により評価する。

2) 総括的評価 a) 知識: 定期試験、レポート、中間テストなどにより総合的に評価する。

c) 態度:受講態度(出席状況等)により評価する。

教 科 書:免疫学概説(宿前ら 廣川書店)

講義対応Web:WebClassまたは大学HPの"免疫学教室"からリンクあり。

参考: 免疫生物学(笹月監訳 南江堂)

免疫学イラストレイテッド(高津監訳 南江堂)

免疫系のしくみ一免疫学入門一(大沢利昭訳 東京化学同人)

免疫学の基礎(小山次郎、大沢利昭 東京化学同人)

免疫学辞典(大沢利昭ら編 東京化学同人)

医系免疫学(矢田純一著 中外医学社)

医科免疫学(菊池、上出編 南江堂)

標準免疫学(谷口克、宮坂昌之編 医学書院)

臨床に役立つ免疫学(奥村、橋本監訳 メディカルサイエンスインターナショナル)

オフィスアワー: 大野 いつでも可 免疫学教室 研究2号棟505号 ただし、メールにて予約すること。 安達 いつでも可 免疫学教室 研究2号棟505号 ただし、メールにて予約すること。

所属教室:大野免疫学教室研究2号棟505号安達免疫学教室研究2号棟505号

教員からの一言: 専門用語など難解な点もあるかと思いますが、各項目が各々関連して免疫応答系へと体系化しています。分かり難い項目を放置せずにその都度理解するように努めてください。

健康保持と疾病予防

Health Care and Disease Prevention

科目分類 年 第2学年 必修 前期・後期 後 期 単 位 1 環境生体応答学教室(A·B、C·D) 授 教 別府 正敏 環境生体応答学教室(E·F、G·H) 講 師 平野 和也

学習目標 (GIO)

人々の健康と疾病の現状と動向、および疾病や健康障害の発生要因を把握し、さらに、疾病予防と健康保持に貢献するために、保健統計、疫学、および感染症、生活習慣病、職業病の現状とその予防、健康管理に関する基本的知識、技能、態度を修得する。

┃ 行動目標 (SBOs)

1	集団の健康と疾病の現状を把握する上での人口統計の意義を概説できる。
2	人口静態と人口動態について説明できる。
3	国勢調査の目的と意義を説明できる。
4	死亡に関する様々な指標の定義と意義について説明できる。
5	人口の将来予測に必要な指標を列挙し、その意義について説明できる。
6	死因別死亡率の変遷について説明できる。
7	日本における人口の推移と将来予測について説明できる。
8	高齢化と少子化によりもたらされる問題点を列挙できる。
9	疾病の予防における疫学の役割を説明できる。
10	疫学の三要因(病因、環境要因、宿主要因)について説明できる。
11	疫学の種類(記述疫学、分析疫学など)とその方法について説明できる。
12	患者・対照研究の方法の概要を説明し、オッズ比を計算できる。
13	要因・対照研究(コホート研究)の方法の概要を説明し、相対危険度、寄与危険度を計算できる。
14	医薬品の作用・副作用の調査における疫学的手法の有用性を概説できる。
15	疫学データを解釈する上での注意点を列挙できる。
16	健康と疾病の概念の変遷と、その理由を説明できる
17	世界保健機構(WHO)の役割について概説できる。
18	疾病の予防について、一次、二次、三次予防という言葉を用いて説明できる。
19	疾病の予防における予防接種の意義について説明できる。
20	新生児マススクリーニングの意義について説明し、代表的な検査項目を列挙できる。
21	疾病の予防における薬剤師の役割について考える。
22	現代における感染症(日和見感染、院内感染、国際感染症など)の特徴について説明できる。
23	新興感染症および再興感染症について代表的な例を挙げて説明できる。
24	―〜三類感染症および代表的な四、五類感染症を列挙し、分類の根拠を説明できる。
25	母子感染する疾患を列挙し、その予防対策について説明できる。
26	性行為感染症を列挙し、その予防対策について説明できる。

VI

IX

27	予防接種法と結核予防法の定める定期予防接種の種類を挙げ、接種時期などを説明できる。
28	生活習慣病の種類とその動向について説明できる。
29	生活習慣病のリスク要因を列挙できる。
30	食生活と喫煙などの生活習慣と疾患の関わりについて説明できる。
31	主な職業病を列挙し、その原因と症状を説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1~3	別府、平野	社会・集団と健康(保健統計)	1、2、3、4、5、7、 8
4	//	同上(健康と疾病をめぐる日本の現状)	6
5~6	//	同上(疫学)	9、10、11、12、 13、14、15テスト
7	//	疾病の予防(健康とは)	16、17
8~9	//	同上(疾病の予防とは)	16、18、19、20、 21
10~12	//	同上(感染症の現状とその予防)	10、22、23、24、 25、26、27
13	//	同上(生活習慣病とその予防)	28、29、30
14	//	同上(職業病とその予防、など)	31

授業で行っている工夫: 教科書に沿って体系的に授業を行うように努めている。併せて、保健衛生に関するデータや政策 や関連法規の変更点、社会的に注目されている疾病などについて、随時資料を配布し、最新情報 を伝えるように努めている。また、常に変化する保健衛生分野の社会情勢について、日常的に自 主的に情報収集・学習し続ける習慣を身につけるように指導している。

モデル・コアカリ: C11 健康(2)社会・集団と健康、(3)疾病の予防

キュラムとの関連

成績評価方法:試験成績を主とし、出席状況を考慮して評価する。

教 科 書:最新 衛生薬学(別府、平塚編 廣川書店 第3版7刷)

参 考 書: 国民衛生の動向2010/2011年(厚生統計協会)

図説 国民衛生の動向2010/2011 (厚生統計協会)

オフィスアワー: 在室時は不都合でない限り質問受付

所属教室:環境生体応答学教室研究1号館401号

生物薬剤学 Biopharmaceutics

学年 第2学年 科目分類 必修 前期・後期後の期 単位 1

教 授 林 正弘 薬物動態制御学教室 (C·D、E·F) 准教授 富田 幹雄 薬物動態制御学教室 (A·B、G·H)

学習目標 (GIO)

医療に使用される薬物は、錠剤、注射剤などのように製剤化されたものである。薬剤学は、物理薬剤学、生物薬剤学、製剤工学などから成るが、本講義では、その中の生物薬剤学に関する知識と技能を修得する。薬物の生体内運命を理解するために、吸収、分布、代謝、排泄の過程、および薬物速度論に関する基本的知識とそれらを解析するための基本的技能を修得する。なお、生物薬剤学は4年次にも開講され、そこでは薬物速度論の応用的知識を習得することになる。

┃ 行動目標 (SBOs)

1	薬物の主な吸収部位を列挙できる。
2	消化管の構造、機能と薬物吸収の関係を説明できる。
3	受動拡散(単純拡散)、促進拡散の特徴を説明できる。
4	能動輸送の特徴を説明できる。
5	非経口投与後の薬物吸収について部位別に説明できる。
6	薬物の吸収に影響する因子を列挙し説明できる。
7	薬物が生体内に取り込まれた後、組織間で濃度差が生じる要因を説明できる。
8	薬物の脳への移行について、その機構と血液一脳関門の意義を説明できる。
9	薬物の胎児への移行について、その機構と血液一胎盤関門の意義を説明できる。
10	薬物の体液中での存在状態(血漿タンパク結合など)を組織への移行と関連付けて説明できる。
11	分布容積が著しく大きい代表的な薬物を列挙できる。
12	代表的な薬物のタンパク結合を説明できる。
13	初回通過効果について説明できる。
14	組織(肝、腎)クリアランスおよび固有クリアランスについて説明できる。
15	腎における排泄機構について説明できる。
16	腎クリアランスについて説明できる。
17	糸球体ろ過速度について説明できる。
18	胆汁中排泄について説明できる。
19	腸管循環を説明し、代表的な腸管循環の薬物を列挙できる。
20	唾液・乳汁中への排泄について説明できる。
21	尿中排泄率の高い代表的な薬物を列挙できる。
22	薬物動態に関わる代表的なパラメーターを列挙し、概説できる。
23	薬物の生物学的利用能の意味とその計算法を説明できる。
24	線形 1―コンパートメントモデルを説明し、これに基づいた計算ができる。
25	線形 2一コンパートメントモデルを説明し、これに基づいた計算ができる。

IX

26	線形コンパートメントモデルと非線形コンパートメントモデルの違いを説明できる。
27	生物学的半減期を説明し、計算できる。
28	全身クリアランスについて説明し、計算できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	AB富田、CD林 EF林、GH富田	序論(何を学ぶか)、生体膜透過機構	1, 3
2	//	生体膜透過機構	1, 3, 4
3	//	薬物の吸収 I (pH分配理論)	1, 2, 3
4	//	薬物の吸収Ⅱ(消化管吸収、特に小腸からの吸収)	1, 2, 3, 4
5	//	薬物の吸収Ⅲ(吸収に影響する要因)	6
6	//	薬物の吸収IV(小腸以外からの吸収)	5, 13
7	//	薬物の分布 I (臓器分布)	7、8、11
8	//	薬物の分布 Ⅱ (タンパク結合)	9、10、12
9	//	薬物の排泄 I (尿中排泄)	15、16、17
10	//	薬物の排泄Ⅱ(胆汁中排泄、唾液、呼気、乳汁中排泄)	18、19、20
11	//	薬物速度論 I (1 – コンパートメントモデル、1 次速度定数、分布容積、生物学的半減期)	24、27
12	//	薬物速度論 II(1 −コンパートメントモデル、2 −コンパートメントモデル)	24、25、26
13	//	薬物速度論Ⅲ(組織クリアランス、全身クリアランス、血中 濃度曲線下面積、生物学的利用能)	14、16、23、28

授業で行っている工夫: 教科書の記述で特に重要な部分を板書し、できるだけ丁寧に解説している。必要な理論式の誘導を行い、練習問題を解くなど理解度が増すように努めている。さらに最終回にはまとめの意味で

の資料を配布し、問題解決能力の醸成に努めている。

モデル・コアカリ: C13 薬の効くプロセス(4)薬物の臓器への到達と消失、(5)薬物動態の解析キュラムとの関連

成績評価方法:1)形成的評価 a)知識:練習問題を出題し、それを解くことにより基本的知識を学ぶ。

b) 技能:基本的知識特に計算方法を繰り返し学ぶ。 c) 態度:受講態度(出席状況等)により評価する。

2) 総括的評価 a) 知識: 定期試験により評価する。

c) 態度:受講態度(出席状況等)により評価する。

教 科 書:最新薬剤学第9版(廣川書店)

参考書:生物薬剤学(南江堂)

オフィスアワー:林 正弘 在室のときにはいつでも可。 富田幹雄 在室のときにはいつでも可。

> **教 室**:林 正弘 薬物動態制御学教室 研究棟1号館3階 富田 幹雄 薬物動態制御学教室 研究棟1号館3階

教員からの一言:計算式を使う内容が随所で出てきますが、理解できないまま放置しないで、疑問は出来るだけ早

めに解決し、理解を深めてください。

 \blacksquare

応用統計学 Statistics

 学年
 第2学年
 科目分類
 必修
 前期・後期前期
 期 単位
 1

 准教授
 大河内 広子(E・F、G・H)
 非常勤講師 片野 修一郎(A・B、C・D)

学習目標 (GIO)

薬学を学び研究するために必要な統計数学の見方、統計データのとり方、解析方法を、薬効の統計学的判定方法も含めて学習する。基礎を重視し、具体例を通して、統計的な考え方と技術を身につける。

▋行動目標 (SBOs)

•	
1	薬学において統計学がどのように役立つかを説明できる。
2	母集団と標本の関係を説明でき、乱数表を用いて無作為抽出を実行できる。
3	変数(名義尺度、順序尺度、間隔尺度、比尺度)に応じて、データを度数分布表などの表にまとめ、ヒスト グラムなどのグラフに表現できる。
4	データが間隔尺度変数か比尺度変数であるとき、累積度数分布を求め、折れ線グラフで表現できる。
5	分布の型について説明できる。また、代表値(平均値、中央値、最頻値など)と散布度(範囲、4分偏差、標準偏差など)について、それぞれを説明できる。
6	表やグラフで表現されたデータについて、代表値や散布度を、それぞれ求められる。
7	母集団の平均値、分散、標準偏差を、それぞれ標本から点推定できる。
8	標本平均の分布の特徴を、中心極限定理などによって説明できる。
9	母平均を、正規分布やt分布を用いて、標本から区間推定できる。
10	標本比率の分布の特徴を説明でき、標本から母比率を区間推定できる。
11	母分散を、カイ2乗分布を用いて、標本から区間推定できる。
12	検定の基本的な考え方を、帰無仮説と対立仮説、第1種と第2種の誤り、第1種の誤りと有意水準(危険率)などに関連させて説明できる。
13	2グループの平均値または比率の差を、正規分布やt分布を適宜用いて検定できる。また、分散の差を、F分布を用いて検定できる。
14	散布図(相関図)を作成し、相関係数や回帰直線を求め、それらの意味を説明できる。
15	独立性や適合度を、カイ2乗分布を用いて検定できる。
16	パラメトリック検定とノンパラメトリック検定の特徴を説明でき、ウイルコクソンの2標本検定・1標本検定、 スピアマンの順位相関係数による検定をそれぞれ実行できる。
17	平均値や比率などを比較する検定において、比較する群の個数によって用いる検定手法が異なることを説明できる。また、一元配置分散分析などの基本的な多重比較を実行できる。

回数	担 当	内 容	対応 (SBOs)
1	大河内、片野	母集団からの標本の抽出、標本からの母集団の推定について 分布の型と、位置・ひろがりによって、データを要約して表 す	1, 2, 3, 4, 5, 6
2	//	標本平均・標準偏差から母集団のそれらを点推定する 標本平均の分布の特徴(中心極限定理)	7, 8

回数	担 当	内 容	対応 (SBOs)
3~5	//	標本の平均、比率、分散から母平均、比率、分散を区間推定 する	9、10、11
6~8	//	平均値・比率の差の検定	12、13
9	//	相関と回帰	14
10~11	//	独立性、適合度の検定	15
12	//	母集団の分布が不明なときの検定法(ノンパラメトリック検 定法)	16
13, 14	//	3つ以上の平均を同時に比較する方法	17

授業で行っている工夫: 演習の際には、グループ討論をいれます。

授業内容の補助プリントを配布し、レポートや小テスト等を適宜実施し、学習到達度のフィード バックを行います。

モデル・コアカリ:【疫学】

キュラムとの関連 6) 医薬品の作用・副作用の調査における疫学的手法の有用性を概説できる。

7) 疫学データを解釈する上での注意点を列挙できる。

【牛物統計の基礎】

- 1) 帰無仮説の概念を説明できる。
- 2) パラメトリック検定とノンパラメトリック検定の使い分けを説明できる。
- 3) 主な二群間の平均値の差の検定法(tー検定、Mann Whitney U検定)について、適用できるデータの特性を説明し、実施できる。(知識・技能)
- 4) カイ2乗検定の適用できるデータの特性を説明し、実施できる。(知識・技能)

【臨床への応用】

- 3) バイアスを回避するための計画上の技法(盲険化、ランダム化)について説明できる。
- 4) リスク因子の評価として、オッズ比、相対危険度および信頼区間について説明し、計算できる。 (知識・技能)

成 績 評 価 方 法: 1) 形成的評価 a) 知識: プリントや教科書での課題や演習問題によって理解を深める。b) 技能: 演習時間に具体的な問題に触れ、こまめなフィードバックをする。2) 総括的評価 a) 知識: 定期 試験を行う。レポート、出席状況、小テストの結果なども考慮する。

教 科 書: 改訂版 やさしい統計学 保険・医薬・看護・福祉関係者のために(片平冽彦著、桐書房)

参考: 新統計入門(小寺平治著、裳華房)

すぐわかる統計解析(石村貞夫著、東京図書)

医学・薬学のための生物統計学入門(今野秀二・味村良雄著、ムイスリ出版)

オフィスアワー: 大河内広子 「数学関連の学習支援」を活用して下さい。授業の前後の時間も可。 他の時間帯は要予約。

片野修一郎 「数学関連の学習支援 | を活用して下さい。授業の前後の時間も可。

所 属 教 室: 応用統計学研究室 研究2号棟607号

特 記 事 項:統計学の授業内容を理解するためには、前回までの授業内容を理解していることが不可欠です。 従って、授業の復習をしないで次の授業に出席することを1~2回でも続けると、それ以降の授 業内容が全く分からなくなります。1週間の生活習慣の中に、統計学を復習する時間帯を必ず入 れて下さい。

物理薬剤学 Physical Pharmacy

学年 第2学年 科目分類 必修 前期·後期 前期 単位 1

教 授 新槇 幸彦 (A·B、C·D、E·F、G·H)

学習目標 (GIO)

医療に使用される薬物は、錠剤、注射剤などのように製剤化されたものである。最近の薬物療法の精密化に伴い、薬物を必要な部位へ、必要な量、必要な時間供給することを目的としたまったく新しいタイプの投与剤形や方法(DDS製剤)が開発されている。物理薬剤学では新たなDDS製剤について紹介するとともに、それら製剤の開発に必須である、溶液論、粉体科学、界面化学、分散系、レオロジー、反応速度論など、薬剤学の基礎知識を習得する。

┃ 行動目標 (SBOs)

1	Drug delivery system (DDS) の概要について説明できる。
2	プロドラッグについて説明できる。
3	アンテドラッグについて説明できる。
4	放出制御型製剤について説明できる。
5	標的指向型製剤について説明できる。
6	抗体医薬、核酸医薬について説明できる。
7	遺伝子治療について説明できる。
8	理想溶液とラウールの法則について説明できる。
9	希薄溶液の束一的性質について説明できる。
10	電解質溶液の束一的性質について説明できる。
11	高分子溶液と相分離(コアセルベーション)について説明できる。
12	溶解度相図による複合体形成の説明ができる。
13	表面張力について説明できる。
14	ミセル形成について説明できる。
15	界面活性剤の分類、クラフト点、曇点、HLBについて説明できる。
16	コロイド、乳剤・懸濁剤について説明できる。
17	クリーミング、ケーキング、ストークスの式に関して説明できる。
18	ニュートン流動と非ニュートン流動について説明できる。
19	チキソトロピーについて説明できる。
20	粘弾性におけるマックスウエルおよびフォークトのモデルについて説明できる。
21	レオロジー的性質の測定法について説明できる。
22	粉体粒子の物理化学的性質について説明できる。
23	粉体粒子の粒子径と粒度分布について説明できる。
24	粉体の密度、流動性、ぬれ、吸湿性について説明できる。
25	薬物溶出・放出におけるNoyes — Whitoney式、Nernst — Noyes — Whitoney式、Hixson — Crowell式、Higuchi式について説明できる。
26	反応速度式と反応機構について説明できる。
27	分解速度定数におよぼす温度、pH、イオン強度、誘電率の影響について説明できる。
28	アレニウス式とアレニウスプロットについて説明できる。
29	複合体形成および化学構造の修飾による製剤の安定化について説明できる。

▋授業内容

回数	担 当	内 容	対応 (SBOs)
1	新槇	DDSの概要	1, 2, 3
2	//	放出制御型製剤および標的指向型製剤	4、5
3	//	抗体医薬、核酸医薬	6、7
4	//	希薄溶液と束一的性質	8, 9, 10, 11
5	//	複合体形成および包接化合物	12
6	//	界面現象と界面活性剤	13、14、15
7	//	分散系(コロイド、乳剤・懸濁剤)とその安定性	16、17
8	//	レオロジー	18, 19, 20, 21
9	//	粉体I	22、23
10	//	粉体Ⅱ	24
11	//	製剤からの薬物の溶出	25
12	//	製剤の安定性 I	26、27、28
13	//	製剤の安定性 Ⅱ	26、27、28
14	//	製剤の安定化	29

授業で行っている工夫:書いて覚えて・理解することをモットーに板書を中心とした授業を展開している。2年生になって薬学部の専門科目の授業として物理化学を中心とした基礎科学が最新の医薬品開発のどのようにリンクしているかをわかりやすく解説している。授業のはじめに「10分程度の復習時間」を設け、形成的な学習に結びつける。

モデル・コアカリ: C16 製剤化のサイエンスキュラムとの関連 (1) 製剤材料の性質

ュラムとの関連 (1) 製剤材料の性質 (2) 剤形を作る

(2) 剤形を作る (3) DDS

C17 医薬品の開発と生産

(3) バイオ医薬品とゲノム情報

C1 物質の物理化学

(3) 物質の状態Ⅱ

(4) 物質の変化

成績評価方法:形成的な評価に関しては、講義の開始時、10分程度を使い前講義の復習をし、重要な点を明確にするとともに知識の習得に努める。総括評価に関しては定期試験の得点率60%を合否の判断基準とする。

教 科 書:最新薬剤学(第9版)(林、川島、乾 編 廣川書店)

参考: わかりやすい物理薬剤学(辻、川島編 廣川書店)

マーチン フィジカルファーマシー(大塚、瀬崎編 廣川書店)

ベーシック薬学教科書シリーズ 物理化学(石田寿昌編、化学同人)

製剤への物理化学(嶋林三郎、廣川書店)

新薬剤学 (原島秀吉、南江堂)

オフィスアワー:いつでも可。 薬物送達学教室 研究1号館3階302号 ただし、要予約。

所属教室:薬物送達学教室研究1号館3階302号

医療心理

Medical Psychology

学年 第2学年 科目分類 必修 前期・後期前期 単位 1

教授 土屋 明美 医療人間関係学研究室(A·B、C·D、E·F、G·H)

学習目標 (GIO)

人間は「関係的」に生きています。医療現場においては、患者(自己)と医療従事者(人)と物(薬、ほか)が関わり合いながら、患者の「人としての生活」が発展し、やまいの快復するように、それぞれが充分に機能することが求められています。この講義では医療の担い手である薬学専門家として、患者・家族・同僚との信頼関係の確立を目指して基本的な人間理解の知識及びコミュニケーションスキルを修得します。

▍行動目標 (SBOs)

1	感じること・考えること・行動することの関連について説明できる。
2	パーソナリティーの諸理論について説明できる。
3	心理検査・心理療法について概説できる。
4	人間関係に影響を及ぼす心理的要因を概説できる。
5	臨床的コミュニケーションの特徴を把握し、かかわり技法を体得する。
6	対立意見を尊重して、協力してよりよい解決方法を見出す。
7	心と身体の関係について説明できる。
8	患者の心理状態を説明できる。
9	各疾患に特有な心理状態について説明できる。
10	ライフサイクルについて概説できる。
11	発達課題について説明できる。
12	患者や家族の価値観の多様性を知る。
13	医療従事者の陥りやすい心理状態と対処の仕方を知る。

回数	担 当	内 容	対応 (SBOs)
1	土屋	自己理解・他者の心理学 行動の成り立ち	1
2	//	パーソナリティーのとらえ方	2
3	//	心と身体の関係	2、4、6
4	//	ストレスと適応	4
5	//	人間発達と病:乳児期~青年期	9, 10
6	//	人間発達と病:成人期~老年期	9, 10
7	//	患者の心理 その1	7、8、9
8	//	患者の心理 その2	7、8、9
9	//	心理検査・心理療法	3
10	//	心理検査・心理療法臨床的コミュニケーション その 1	4、5、6

選択科

XI 実習科日

回数	担 当	内 容	対応 (SBOs)
11	//	臨床的コミュニケーション その2	4、5、6
12	//	臨床的コミュニケーション その3	4、5、6
13	//	患者家族・医療従事者の心理	12、13

授業で行っている工夫: 小演習 · ロールプレイングを導入し、体験的理解を促す。

モデル・コアカリ: Aヒューマニズムについて学ぶ (3) 信頼関係の確立を目指して

キュラムとの関連

成 **績 評 価 方 法**: 1) 形成的評価 a) 知識: ハレポート b) 技能: 演習への参加、ノートの取り方

2) 総括的評価 a) 知識: 定期試験 c) 態度: 受講態度(出席状況等)による。

教 科 書: 医療における人の心理と行動 生和秀敏・井内康輝 共編著 培風館 2006

参 考 書: ファーマシューティカルコミュニケーション

日本ファーマシューティカルコミュニケーション学会編集 南山堂

薬剤師と薬学生のための コミュニケーション実践ガイド じほう 2004

健康心理学入門 アンソニー・J.カーティス 新曜社 2006

オフィスアワー: 土屋 明美 いつでも可、ただしメールにて予約してください。 研究2号館407号室

所属教室:土屋明美医療人間関係学研究室

教員からの一言:講義を聴きながら感じたこと、考えたことや疑問をノートに書き留めることで、自分の問題意識

を明確にして能動的に課題にかかわる態度を身につけよう。

薬の効き方 I Pharmacology I

生年 第2学年 科目分類 必修 前期·後期後期 期 単位 1

教 授 **立川 英一** (A·B、C·D、E·F、G·H) 准教授 **田村 和広** (A·B、C·D、E·F、G·H)

学習目標 (GIO)

前期の"生理活性物質概論"で学習した、医薬品の作用を理解する上で必要な基本的知識である薬理学の総論的事項、特に神経伝達物質とホルモン・オータコイドの知識を基にして、この「薬の効き方 I 」では、末梢神経系(自律神経系・体性神経系)に作用する薬物、並びに内分泌系に作用する薬物について学習する。末梢神経系と内分泌系の生理的調節因子の作用の理解と共に、これらの系に作用する各薬物の薬理作用、作用のメカニズム(機序)、医療用途の他、副作用、相互作用などを中心に学習し、治療薬としての薬物の特性を理解する。本教科は、すでに学んだ機能形態学、生化学、有機化学などの周辺領域科目をベースとした教科であり、これらの内容も再度復習しておく必要がある。

▋行動目標 (SBOs)

■以下の項目が説明できる

1	末梢神経系の基本的形態学的特徴と交感・副交感神経支配の主な器官に対する興奮効果
2	アドレナリン受容体($lpha$ 、 eta)とムスカリン受容体(M)の主要な存在部位と興奮時の生理的効果
3	フルアドレナリンとアドレナリンの静注時に見られる心拍数に対する差異 (β 受容体の特性の観点から)
4	アドレナリン作動薬を作用様式から大きく3つに分類し、その代表的薬物、薬理作用の特性
5	α受容体遮断薬とそれらの臨床用途
6	選択的β ₁ またはβ2受容体遮断薬の特徴、臨床用途、副作用
7	アドレナリン作動性効果遮断薬の分類と主要な薬物、薬理作用、機序、副作用
8	コリン作動薬の分類、主要なコリン作動薬の薬理作用、機序、副作用
9	緑内障の病態およびその主な治療薬の作用について説明できる。
10	代表的ムスカリン受容体拮抗薬(抗コリン薬)の薬理作用、機序、副作用
11	自律神経節刺激薬および遮断薬の薬理作用と副作用
12	神経筋接合部の形態と機能および興奮収縮連関
13	主な末梢性筋弛緩薬の薬理作用、機序、主な副作用、重要な薬物相互作用
14	局所麻酔薬の作用機序、適用方法、全身作用
15	主な局所麻酔薬の適用法、特性
16	下垂体前葉ホルモンと視床下部ホルモンの関連薬の医療用途と治療根拠
17	下垂体前葉ホルモン(オキシトシンと ADH) の作用、また医療用途
18	GnRH誘導体の医療用途と副作用
19	代表的な合成卵胞ホルモンの作用と用途
20	抗エストロゲン薬の特性と適用
21	代表的な黄体ホルモン誘導体の特性と用途
22	経口避妊薬として用いられる化合物とその作用機序、副作用
23	代表的合成男性ホルモンと蛋白同化ホルモンの作用の特性と適用
	=1

24	プロラクチンの作用とその分泌に影響する薬物
25	GHの作用メカニズムとその関連薬
26	TSH、TRHの作用と医療用途
27	甲状腺ホルモンの生理作用とその生合成阻害薬の作用機序と適用
28	甲状腺機能障害の疾患の病態と治療薬の治療根拠
29	血中の Ca ²⁺ 調節因子(PTH、カルシトニン)の分泌調節機構と骨、腎臓、腸管への作用
30	骨粗鬆症治療薬の概要
31	ACTH関連薬とその医療応用
32	副腎皮質で生成されるホルモンの生合成経路とその調節因子
33	副腎皮質ホルモン(糖質コルチコイド)の薬理作用と副作用
34	メチラポン、トリロスタン、スピロノラクトンの薬物特性と医療用途
35	インスリンの分泌メカニズム、生理作用と適用症例
36	経口糖尿病治療薬 (SU薬、αーグリコシダーゼ阻害薬、アルドース還元酵素阻害薬、インスリン抵抗性改善薬、GLP-1関連薬)の薬物特性

回数	担当	内 容	対応 (SBOs)
1	田村	自律神経作用薬 1:神経伝達物質(NA、ACh)の作用の復習 とアドレナリン作動薬	1~4
2	//	自律神経作用薬2:アドレナリン作動性効果遮断薬(α遮断薬)	5
3	//	自律神経作用薬3:アドレナリン作動性効果遮断薬(β遮断薬)、 アドレナリン作動性ニューロン遮断薬	6、7
4	//	自律神経作用薬4:コリン作動薬、眼に作用する薬	8, 9
5	立川	自律神経作用薬5:ムスカリン受容体拮抗薬(抗コリン薬)	10
6	//	自律神経作用薬5:ムスカリン受容体拮抗薬つづきと自律神経 節作用薬	10, 11
7	//	体性神経作用薬 1: 骨格筋の機能形態の復習と末梢性筋弛緩薬 の作用と特性	12、13
8	//	体性神経作用薬2:局所麻酔薬の作用と適用方法、主な局所麻 酔薬の特性	14、15
9	田村	内分泌系作用薬 1:内分泌系作用薬の概要、視床下部ホルモン、下垂体後葉ホルモン(オキシトシン・ADH)関連薬、下垂体前葉ホルモン:性腺刺激ホルモン関連薬、エストロゲン(卵胞ホルモン)関連薬	16~20
10	//	内分泌系作用薬2:黄体ホルモン関連薬、 ピル (経口避妊薬)、 性ホルモン (男性) 関連薬	21~23
11	//	内分泌系作用薬3:プロラクチン、GH、TSH・甲状腺ホルモン関連薬	24~28
12	//	内分泌系作用薬4:上皮小体ホルモン(PTH)とカルシトニン関連薬、骨粗鬆症治療薬概要	29、30

IX

XI 実習科目

回数	担 当	内 容	対応 (SBOs)
13	//	内分泌系作用薬5:ACTH関連薬および内分泌作用薬に関する 演習	31~34
14	//	内分泌系作用薬6:インスリンの分泌と作用、糖尿病の治療薬	35、36

授業で行っている工夫: 可能な限り、薬物作用がわかりやすいように図や絵を使って板書している。授業開始前には、該当するSBOを提示し、目標を明確にしている。当該年度と前年度の重要講義資料(powerpoint)は、Web公開(webclass)しており、復・予習、試験対策に役立つようにしている。国家試験にも出題されることが多い重要な図は、必ず書画カメラで投影して説明している。また、SBOについてのまとめノートを作るよう指示し、1部は講義中に発表させている。講義内容の理解に役立つと思われる読書(本はいくつか指定)の感想文および講義の予習項目に関する簡単なレポート課題を夏休み後に提出してもらう。なお、これらの提出物は、評価点に加算する。このレポート作成は自発的学習を喚起するため、また授業内容の理解を向上させるための方策でもある。

モデル・コアカリ: [薬と疾病] C13 薬の効くプロセスのうち、(2) 薬の効き方 I [自律神経系に作用する薬]]) — **キュラムとの関連** 3)、[知覚神経系・運動神経系に作用する薬]]) —2)、(3) 薬の効き方 I [ホルモンと薬]]) —3) 「代謝系に作用する薬]]) の項目に相当する。

成績評価方法: 1) 形成的評価 a) 知識…課題図書を読み、レポートを作成し提出する。webclass上に公開した演習問題を各自行う。

- b) 技能…SBO項目別にまとめたノートを作成し演習で公開する。c) 態度…授業時の約束事を遵守させる。
- 2)総括的評価 a)知識…定期試験の結果で評価する。レポート、出席、受講態度(以下の授業中の約束事)は加点する。
 - c) 態度…該当しない。

教 **書**:最新 薬の効き方 I (立川・田野中編 愛智出版)

参考: New薬理学(第5版)(加藤、田中編 南江堂)

オフィスアワー:前・後期を通して、都合が良ければ、いつでも可。

所属教室:田村内分泌·神経薬理学教室研究2号館404号 立川内分泌·神経薬理学教室研究2号館402号

特 記 事 項: 次回の講義予定項目のSBOに関するテキスト部分を読んでから、講義にのぞむこと。

教員からの一言: 自律神経系に作用する薬物は、再び、中枢神経系、循環器系、呼吸器系、消化器系作用薬などに 登場します。この点からも、"自律神経薬理を制するものは、薬理を制する"、といっても過言で はありません。効き方 I では、このうち重要な薬物を重点的に学習していきます。内分泌系作用 薬についても今日、重要かつ汎用される薬物が多く含まれています。これらの薬物の作用のメカニズムを理解しておくことは、薬物治療学を学ぶ上での基礎となります。日頃から講義内容をまとめた CBT や国試対策にも役に立つ自分のノートを作っていきましょう。やむをえない事情により授業進行が遅れた場合は、1、 2回の補講を行うことがあります。授業中の約束事、①遅刻は 欠席とみなす ②携帯電話の使用や内職は禁止 ③私語厳禁 ④ノートをとる。

疾病と薬物治療 I

第2学年

Diseases and Pharmacotherapy I 期

単位

1

後

市田 公美 (A·B、C·D、E·F、G·H) 教 授 准教授 篠原 **佳彦**(A·B、C·D、E·F、G·H)

科目分類

必修

学習目標 (GIO)

疾病に伴う症状と臨床検査値の変化など的確な患者情報を取得し、患者個々に応じた薬の選択、 用法・用量の設定および各々の医薬品の「使用上の注意」を考慮した適正な薬物治療に参画でき るようになるために、薬物治療に関する基本的知識を修得する。疾病と薬物治療の(I)~(WI) のうち本講義では、病態を理解する上で必要な症候、臨床検査の知識を修得する。

前期・後期

▋行動目標 (SBOs)

1	全身、呼吸器系疾患の症候について、生じる原因とそれらを伴う代表的疾患を説明できる。
2	心血管系疾患の症候について、生じる原因とそれらを伴う代表的疾患を説明できる。
3	消化器系疾患の症候について、生じる原因とそれらを伴う代表的疾患を説明できる。
4	腎・泌尿器系疾患の症候について、生じる原因とそれらを伴う代表的疾患を説明できる。
5	神経系疾患の症候について、生じる原因とそれらを伴う代表的疾患を説明できる。
6	血液系疾患およびその他の疾患の症候について、生じる原因とそれらを伴う代表的疾患を説明できる。
7	臨床検査の基本的検査や基準値について説明することができる。
8	尿・糞を用いた代表的な検査項目を列挙し、その検査値の異常から推測される主な疾患を挙げることができ る。
9	血液学的検査の代表的な検査項目を列挙し、その検査値の異常から推測される主な疾患を挙げることができ る。
10	血液生化学的検査の代表的な検査項目を列挙し、その検査値の異常から推測される主な疾患を挙げることが できる。
11	血清学的・免疫学的検査の代表的な検査項目を列挙し、その検査値の異常から推測される主な疾患を挙げる ことができる。
12	悪性腫瘍に関する代表的な検査項目を列挙し、その検査値の異常から推測される主な疾患を挙げることができる。
13	動脈血ガス分析の検査項目を列挙し、その検査値の臨床的意義を説明できる。
14	代表的なバイタルサインを列挙できる。

回数	担 当	内 容	対応 (SBOs)
1	市田	症候一 1 全身、呼吸器系疾患(発熱、発疹、痛み、呼吸困難等)	1
2	//	症候一2 心血管系疾患(胸痛、高血圧、低血圧、ショック等)	2
3	//	症候一 3 消化器系疾患(黄疸、悪心・嘔吐、腹痛・下痢、便秘等)	3
4	//	症候一4 腎·泌尿器系疾患(脱水、浮腫、血尿、頻尿、排尿障害等)	4
5	//	症候一 5 神経系疾患(頭痛、意識障害、運動障害、知覚障害等)	5
6	//	症候ー 6 血液系疾患およびその他の疾患(貧血、出血傾向、 月経異常、視力障害等)	6

回数	担 当	内 容	対応 (SBOs)
7	篠原	臨床検査― 1 基礎的検査と基準値	7
8	//	臨床検査— 2 尿·糞検査	8
9	//	臨床検査一 3 血液学的検査	9
10	//	臨床検査一4 血液生化学的検査(1)	10
11	//	臨床検査一5 血液生化学的検査(2)	10
12	//	臨床検査―6 動脈血ガス検査、バイタルサイン	13、14
13	//	臨床検査— 7 血清学的·免疫学的検査	11, 12

授業で行っている工夫:本講義内容は機能形態学や薬の効き方等の関連科目と密接な関係があるので、それらの科目を有機的に結びつけ、知識の定着と理解が深まるように工夫している。要点を整理し、図解を取り入れた補助プリントを配布し、学習しやすいように努めている。

モデル・コアカリ: C14 薬物治療(1)体の変化を知る【症候と臨床検査値】

キュラムとの関連

成績評価方法: 出席と定期試験および受講態度で評価する。なお、受講態度によっては受験資格を失うことがある。

教 科 書:薬学生のための新臨床系医学(市田、細山田編 廣川書店)

疾病と薬物治療(Ⅰ)プリント(生協より販売)

参考書:疾病と病態生理(橋本、佐藤、豊島編 南江堂)

今日の臨床検査(河合、水島編 南江堂) 異常の出るメカニズム(河合、尾形、伊藤編 医学書院)

オフィスアワー:市田、篠原 いつでも可(市田は金曜日を除く)、ただし、要予約。

病態生理学教室、研究2号館604号

所属教室:市田病態生理学

篠原 病態生理学

疾病と薬物治療Ⅱ Diseases and Pharmacotherapy II

必修

科目分類

准教授 **山田 純司** (A・B、C・D、E・F、G・H) 助 教 **大友 隆之** (A・B、C・D、E・F、G・H)

学習目標 (GIO)

年

第2学年

疾病に伴う症状と臨床検査値の変化など的確な患者情報を取得し、患者個々に応じた薬の選択、 用法・用量の設定および各々の医薬品の「使用上の注意」を考慮した適正な薬物治療に参画できるようになるために、薬物治療に関する基本的知識を修得する。疾病と薬物治療 I ~VIIIのうち、本講義では代表的な内分泌疾患、代謝疾患、骨・関節疾患に関して、病態生理、臨床症状、検査・診断、治療および患者説明について学習する。さらに、治療に用いられる代表的な医薬品に関する基本的知識を修得する。

前期・後期

後期

単位

┃ 行動目標 (SBOs)

1 代表的な代謝疾患を挙げることができる。 2 糖尿病とその合併症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 3 脂質異常症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 4 肥満症、メタボリックシンドロームについて概説できる。 5 高尿酸血症・痛風の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 6 骨、関節に関する代表的な疾患を挙げることができる。 7 骨粗鬆症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 8 骨軟化症、変形性関節症について概説できる。 9 ホルモンの産生臓器別に代表的な疾患を挙げることができる。 10 甲状腺機能異常症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 11 クッシング症候群の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 12 尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 13 副甲状腺機能異常症、アルドステロン症、アジソン病、褐色細胞腫について概説できる。		
3 脂質異常症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 4 肥満症、メタボリックシンドロームについて概説できる。 5 高尿酸血症・痛風の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 6 骨、関節に関する代表的な疾患を挙げることができる。 7 骨粗鬆症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 8 骨軟化症、変形性関節症について概説できる。 9 ホルモンの産生臓器別に代表的な疾患を挙げることができる。 10 甲状腺機能異常症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 11 クッシング症候群の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 12 尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。	1	代表的な代謝疾患を挙げることができる。
4 肥満症、メタボリックシンドロームについて概説できる。 5 高尿酸血症・痛風の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 6 骨、関節に関する代表的な疾患を挙げることができる。 7 骨粗鬆症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 8 骨軟化症、変形性関節症について概説できる。 9 ホルモンの産生臓器別に代表的な疾患を挙げることができる。 10 甲状腺機能異常症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 11 クッシング症候群の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 12 尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。	2	糖尿病とその合併症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
5 高尿酸血症・痛風の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 6 骨、関節に関する代表的な疾患を挙げることができる。 7 骨粗鬆症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 8 骨軟化症、変形性関節症について概説できる。 9 ホルモンの産生臓器別に代表的な疾患を挙げることができる。 10 甲状腺機能異常症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 11 クッシング症候群の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 12 尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 13 尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。	3	脂質異常症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
6 骨、関節に関する代表的な疾患を挙げることができる。 7 骨粗鬆症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 8 骨軟化症、変形性関節症について概説できる。 9 ホルモンの産生臓器別に代表的な疾患を挙げることができる。 10 甲状腺機能異常症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 11 クッシング症候群の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 12 尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 13 尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。	4	肥満症、メタボリックシンドロームについて概説できる。
7 骨粗鬆症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 8 骨軟化症、変形性関節症について概説できる。 9 ホルモンの産生臓器別に代表的な疾患を挙げることができる。 10 甲状腺機能異常症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 11 クッシング症候群の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 12 尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 13 尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。	5	高尿酸血症・痛風の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
8 骨軟化症、変形性関節症について概説できる。 9 ホルモンの産生臓器別に代表的な疾患を挙げることができる。 10 甲状腺機能異常症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 11 クッシング症候群の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 12 尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。	6	骨、関節に関する代表的な疾患を挙げることができる。
9 ホルモンの産生臓器別に代表的な疾患を挙げることができる。 10 甲状腺機能異常症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 11 クッシング症候群の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 12 尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。	7	骨粗鬆症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
10 甲状腺機能異常症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 11 クッシング症候群の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 12 尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。	8	骨軟化症、変形性関節症について概説できる。
11 クッシング症候群の病態生理、適切な治療薬、およびその使用上の注意について説明できる。 12 尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。	9	ホルモンの産生臓器別に代表的な疾患を挙げることができる。
12 尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。	10	甲状腺機能異常症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
SALES A SIGNAL SOLUTION OF SALES AND	11	クッシング症候群の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
13 副甲状腺機能異常症、アルドステロン症、アジソン病、褐色細胞腫について概説できる。	12	尿崩症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
	13	副甲状腺機能異常症、アルドステロン症、アジソン病、褐色細胞腫について概説できる。

回数	担 当	内 容	対応 (SBOs)
1	山田	総論	1、6、9
2	//	代謝疾患一 1 糖尿病	2
3	//	代謝疾患— 2 糖尿病	2
4	//	代謝疾患一3 糖尿病	2
5	//	代謝疾患一 4 脂質異常症	3
6	//	代謝疾患一 5 脂質異常症	3
7	//	代謝疾患ー6 肥満症・メタボリックシンドローム	4
8	//	代謝疾患— 7 高尿酸血症·痛風	5
9	//	骨·関節疾患— 1 骨粗鬆症	7

XI 実習科目

回数	担 当	内 容	対応 (SBOs)
10	//	骨·関節疾患— 2 骨粗鬆症·骨軟化症·変形性関節症	7、8、13
11	大友	内分泌疾患— 1 甲状腺機能異常症	10
12	//	内分泌疾患— 2 副腎機能異常症	11, 13
13	//	内分泌疾患— 3 下垂体機能異常症・他	12、13
14	山田	総括	1~13

授業で行っている工夫: 最新の診療ガイドラインに基づいて教科書(プリント: A4版 150頁前後)を作成し、毎年、部分改訂している。具体的な症例や処方例を出来るだけ多く紹介するようにしている。疾患ごとに初めの講義で、関連する解剖生理学・生化学的知識を復習してから本論に移る。講義中は書画カメラを利用して教科書への書き込みを促し、写真や医薬パンフレット、医療器具などの資料を出来るだけ多く紹介する。教科書巻末には過去の試験問題を掲載し、その解説を通して要点の整理と理解を助けるように努めている。

モデル・コアカリ: C13 薬の効くプロセス(3) ホルモンと薬、代謝系に作用する薬 キュラムとの関連 C14 薬物治療(3) 内分泌系疾患、代謝性疾患、(4) 骨・関節の疾患

成績評価方法:総括的評価 a) 知識:定期試験の結果に基づいて評価する。但し、受講態度によっては受験資格を失うことがある。

教 科 書:プリント:疾病と薬物治療Ⅱ。生協にて販売。

参考書:治療薬マニュアル(医学書院) 今日の治療指針(医学書院) 今日の治療薬(南江堂)

オフィスアワー: 山田、大友 いつでも可。但し、メールによる予約が必要。 医療薬学研究棟3階 2131・

2136号室

所属教室:山田総合医療薬学講座 大友総合医療薬学講座

VI

医療情報 Pharmaceutical Information

学 年	第2学年	科目分類 必 個	ぎ 前期・後期	後期	単 位	1
教 授	山田 安彦 (月	$A \cdot B$, $C \cdot D$, $E \cdot$	F、G·H)			
教 授	土橋 朗(月	$A \cdot B \cdot C \cdot D \cdot E \cdot$	$F, G \cdot H$			
准教授	高柳理早(月	$A \cdot B \cdot C \cdot D \cdot E \cdot$	$F, G \cdot H$			
助教	横山 晴子(月	$A \cdot B \cdot C \cdot D \cdot E \cdot$	$F, G \cdot H$			

学習目標 (GIO)

薬物治療に必要な情報を医療チームおよび患者に提供するために、医薬品情報ならびに患者から得られる情報の収集、評価、加工などに関する基本的知識を修得する。医薬品情報に関しては、医薬品の適正使用に必要な情報を理解し、正しく取り扱うために、医薬品情報の収集、評価、加工、提供、管理に関する基本的知識を修得する。また患者情報に関しては、個々の患者への適正な薬物治療を実践するために、患者からの情報の収集、評価に必要な基本的知識を修得する。

┃ 行動目標 (SBOs)

1	医薬品として必須の情報を列挙できる。
2	医薬品情報に関わっている職種を列挙し、その役割を説明できる。
3	医薬品の開発過程で得られる情報の種類を列挙できる。
4	医薬品の市販後に得られる情報の種類を列挙できる。
5	医薬品情報に関係する代表的な法律と制度について概説できる。
6	医薬品情報の一次資料、二次資料、三次資料について説明できる。
7	医薬品情報として代表的な一次資料、二次資料、三次資料を列挙し、それらの特徴を説明できる。
8	厚生労働省、製薬企業などの発行する資料を列挙し、それらの特徴を説明できる。
9	医薬品添付文書(医療用、一般用)の法的位置づけと用途を説明できる。
10	医薬品添付文書(医療用、一般用)に記載される項目を列挙し、その必要性を説明できる。
11	医薬品インタビューフォームの位置づけと用途を説明できる。
12	代表的な医薬品情報データベースを列挙し、それらの特徴を説明できる。
13	医薬品情報を質的に評価するために必要な基本的項目を列挙できる。
14	主な医薬品情報の提供手段を列挙し、それらの特徴を説明できる。
15	医薬品の採用・選択にあたって検討すべき項目を列挙できる。
16	EBMの基本概念と有用性について説明できる。
17	EBM実践のプロセスを概説できる。
18	薬物治療に必要な患者情報を列挙できる。
19	患者情報源の種類を列挙し、それぞれの違いを説明できる。
20	問題志向型システム(POS)を説明できる。

▋授業内容

回数	担 当	内 容	対応 (SBOs)
1	山田	医療情報概論	1, 2
2	高柳	開発過程および市販後における医薬品情報	3、4
3	//	医薬品情報に関係する制度と法律	5
4	//	医薬品情報の情報源(1)	6、7、8
5	//	医薬品情報の情報源 (2)	8, 9
6	//	医薬品添付文書の読み方と評価	9, 10
7	//	医薬品情報と医薬品の評価・選択	10、11、15
8	//	EBM (Evidence – Based Medicine)	16、17
9	横山	薬物治療に必要な患者情報とその情報源	18, 19
10	//	問題志向型システム(POS)	20
11	土橋	医薬品情報データベースの活用	12
12	//	医薬品情報の収集、評価、加工	13
13	//	医薬品情報の提供	14

授業で行っている工夫: 各回において修得すべき SBOs を提示し目標を明確にしている。

講義では、テキストのみならず必要に応じて補足資料を使用し、理解を得やすくしている。また 重要なポイントは強調し、テキストへの書き込みを薦めている。

モデル・コアカリ: C15 薬物治療に役立つ情報(1)医薬品情報(2)患者情報キュラムとの関連

成 績 評 価 方 法:1) 形成的評価 a) 知識:例題等を提示して繰り返し行う。

2)総括的評価 a)知識:定期試験、レポート等の結果に出席などを加味して総合評価する。

教 科 書:標準医療薬学 医薬情報評価学(山田安彦 編集、土橋朗 編集協力、医学書院)

参 考 書: 特に指定しない。 **オフィスアワー**: 原則いつでも可。

所属教室:山田臨床薬効解析学教室研究2号館204号室

土橋 医薬品情報解析学教室 研究2号館206号室 高柳 臨床薬効解析学教室 研究2号館204号室 横山 臨床薬効解析学教室 研究2号館204号室

3年次 必修科目

[外国語科目]	
実用薬学英語	146
■共通専門科目	
[化学系薬学]	
医薬品化学 [148
天然医薬品化学	149
医薬品化学Ⅱ	151
[生物系薬学]	
病原微生物学	152
臨床免疫学	154
バイオ医薬品とゲノム情報 …	156
[健康と環境]	
生活環境と健康	158
栄養素の化学	160
化学物質と生体影響	161
食品と健康	163
[医薬品をつくる]	
製剤工学	164
応用薬剤学	166
特許・レギュラトリアルサイエンス	168
[薬と疾病]	
薬の効き方 Ⅱ	170
疾病と薬物治療Ⅲ	172
疾病と薬物治療IV	174
疾病と薬物治療V	176
薬の効き方Ⅲ	178
疾病と薬物治療 VI	180
テーラーメイド医療	182
疾病と薬物治療Ⅷ	184
疾病と薬物治療VII (医療情報演習)・	186
一般用医薬品学	188
[社会と薬学]	
薬学と社会	190

薬事関連法規と制度 I …… 192

■総合科日

実用薬学英語 Practical English for Pharmacy

学 年	第3学年	科目分類	必修		前期・後期	通	年		単 位	2	
准教授	大野 真	K	隹教授	根岸	洋一		准教	授	早川磨	紀男	
准教授	森本 信子	χ	佳教授	袴田	秀樹		講	師	田代	櫻子	
准教授	高木 教夫	Х	佳教授	エリッ	/ク スカイ	イヤー	講	師	西山	貴仁	

学習目標 (GIO)

薬学領域において、科学における共通語としての英語の必要性は近年ますます高まりつつある。 このような時代的要請を念頭において、薬学専門教員と英語教員からなる複数の担当者がその専 門性を活かして講義を行い、薬学・医療関連情報の英文読解力の向上および、英語によるプレゼ ンテーション法の修得を目的とする。

┃ 行動目標 (SBOs)

1	構文と文法の理解に基づいて、科学論文を正確に読解できること。
2	科学論文の大意を短時間に把握し、パラグラフごとに完結にまとめられること。
3	科学論文に頻出する重要構文を正確に書けること。
4	科学論文に出てくる technical terms を理解し正確に記述できること。
5	科学実験、操作、結果の説明などに関する英語表現を理解し列挙できること。
6	薬学関連の研究で用いられる基本的会話を英語でできること。
7	医療の現場で用いられる基本的な会話を英語でできること。
8	与えられたテーマに関して英語で説明できること。

回数	担 当	内 容	対応 (SBOs)
前期6回分	大野、森本	・構文と文法の理解に基づく精読の訓練。 ・大意を素早く把握する多読の訓練。 ・科学論文に頻出する重要構文を正確に書く訓練。	1, 2, 3
前期3回分	高木、西山、根岸、 袴田	・科学論文に出てくる technical termsの説明と訓練。 ・科学実験、操作、結果の説明などに関する英語表現の説明と 訓練。 ・薬学関連の研究で用いられる基本的会話の説明と訓練。	4、5、6
前期3回分	スカイヤー	・医療の現場で用いられる基本的な会話の説明と訓練。 ・与えられたテーマに関して英語で説明する訓練。	7、8
前期最終授業		前期期末試験	
後期6回分	大野、森本	・構文と文法の理解に基づく精読の訓練。 ・大意を素早く把握する多読の訓練。 ・科学論文に頻出する重要構文を正確に書く訓練。	1, 2, 3
後期3回分	田代、早川	・科学論文に出てくる technical termsの説明と訓練。 ・科学実験、操作、結果の説明などに関する英語表現の説明と 訓練。 ・薬学関連の研究で用いられる基本的会話の説明と訓練。	4、5、6
後期3回分	スカイヤー	・医療の現場で用いられる基本的な会話の説明と訓練。 ・与えられたテーマに関して英語で説明する訓練。	7、8

XI 実習科日

回数	担 当	内容	対応 (SBOs)
後期最終授 業		後期期末試験	

授業で行っている工夫:英語教員、薬学専門教員が協力して、それぞれの持ち味を活かした講義をしている。

重要語句、構文は英語で正確に書けるように訓練を行っている。

モデル・コアカリ: G(1)(実用薬学英語)

キュラムとの関連

成績評価方法:1) 形成的評価 a) 知識:提出物を小まめに出させる。

2) 総括的評価 a) 知識:毎回の授業の出席、提出物、小テスト、前・後期2回の期末試験の

成績を総合して評価する。

教 書: 伊藤智夫他『わかりやすい薬学英語』(廣川書店)

Eric Skier他『薬学生・薬剤師のための英会話ハンドブック』(東京化学同人)

講義用プリント

参考書:必要に応じて授業時に指示する。

オフィスアワー:いつでも可。 要事前予約。

所属教室: 大野第二英語研究2号館2階

スカイヤー 第三英語 同上5階 森本 第四英語 同上6階 田代 薬物生体分析学 同上4階 袴田 分析化学 同上4階 高木 分子細胞病態薬理学 同上5階 早川 研究1号館4階 衛生化学 薬物送達学 根岸 同上3階 西山 薬物代謝安全性学 同上4階

医薬品化学 I

Medicinal Chemistry I

学年 第3学年 科目分類 必修 前期·後期 前期 単位 1

教 授 **青柳 榮** (A·B、C·D) 講 師 **釜池 和大** (E·F、G·H)

学習目標 (GIO)

官能基が有機化合物に与える効果を理解するために、カルボニル基、アミノ基などの官能基を有する有機化合物について、反応性およびその他の性質に関する基本的知識を修得する。さらに、個々の官能基を導入、変換するために、それらに関する基本的知識を修得する。

▋行動目標 (SBOs)

1	カルボン酸誘導体(酸ハロゲン化物、酸無水物、エステル、アミド、ニトリル)の代表的な性質と反応を列挙し、説明できる。
2	カルボン酸誘導体(酸ハロゲン化物、酸無水物、エステル、アミド、ニトリル)の代表的な合成法について 説明できる。
3	代表的な炭素酸の酸性度と反応性の関係を説明できる。
4	カルボニル化合物の代表的な $lpha$ -置換反応を列挙し、説明できる。
5	カルボニル化合物の代表的な縮合反応を列挙し、説明できる。
6	アミン類の代表的な性質と反応を列挙し、説明できる。
7	アミン類の代表的な合成法について説明できる。
8	官能基を有する化合物をIUPACの規則に従って命名できる。

▋授業内容

回数	担 当	内 容	対応 (SBOs)
1~4	青柳、釜池	カルボニル化合物の性質、カルボン酸誘導体(酸ハロゲン化物、酸無水物、エステル、アミド、ニトリル)の合成法と求核アシル置換反応	1、2、8
5	//	カルボニル化合物のケトーエノール互変異性	3、4、5
6、7	//	カルボニル化合物の $lpha$ 置換反応:エノールとエノラートイオンの反応	3、4
8~10	//	カルボニル縮合反応:アルデヒドとケトンの縮合(アルドール反応)、エステルの縮合(Claisen縮合反応)、Michael反応	3, 5
11~13	//	アミンの構造と性質 (塩基性度)、アミンの合成法と反応	6、7、8

授業で行っている工夫: あらかじめ目標とするキーワードを提示し、目標を明確にしている。講義内容をまとめた資料の配布、小テストによる演習、授業内容に関連した国家試験の問題の解説等を行い、理解を深めるよう努めている。

モデル・コアカリ: C4 化学物質と性質と反応(3) 官能基

キュラムとの関連 C5 ターゲット分子の合成(1)官能基の導入・変換(2)複雑な化合物の合成

成績評価方法: 1) 形成的評価 a) 知識: 適宜小テストを行う。 c) 態度: 受講状況(出欠等)を記録する。 2) 総括的評価 a) 知識: 定期試験 c) 態度: 受講態度(出欠等)を加味して総合評価する。

教 科 書:マクマリー有機化学 第7版(上、中、下)(J. McMurry 著 伊藤ら訳 東京化学同人)

参考: 有機反応機構(P. Sykes著 久保田尚志訳 東京化学同人)

有機化学 基礎の基礎 (山本嘉則 編著 化学同人) 最新 全有機化合物名称のつけ方 (廖 春栄著 三共出版)

オフィスアワー:いつでも可。 但し、要予約。

所 属 教 室:青柳 榮 機能性分子設計学教室 研究2号館3階306

釜池 和大 生物分子有機化学教室 研究2号館2階205

天然医薬品化学

孝一(A·B、C·D)

Chemistry of Natural Medicines

幸生(E·F、G·H)

学年 第3学年 科目分類 必修 前期・後期 前期 単位 1

学習目標 (GIO)

授

教

生薬は我が国における医薬品の原点である。医師が薬師(クスシ)と呼ばれていた時代、彼等は 専ら生薬を治療に供していた。明治以降、西欧文明の上に立つ学問は分析的な方向に進み、生薬 を研究する学問は細分化されて、有機化学、薬理学、生化学、植物栽培学などが関与するように なった。本講義では2年生時の植物薬品学を基に生薬を化学的な側面、更には広い視野から見て、 薬効成分、成分の確認、生合成、利用などを修得する。

准教授

┃ 行動目標 (SBOs)

竹谷

1	生薬の歴史について概説できる。
2	医薬品として使われている天然有機化合物およびその誘導体を、具体例を挙げて説明できる。
3	代表的な天然有機化合物の構造決定法について具体例を挙げて概説できる。
4	代表的な生薬成分を化学構造から分類し、それらの生合成経路を概説できる。
5	代表的なテルペノイドの構造を生合成経路に基づいて説明し、その基原植物を挙げることができる。
6	代表的な強心配糖体の構造を生合成経路に基づいて説明し、その基原植物を挙げることができる。
7	代表的なアルカロイドの構造を生合成経路に基づいて説明し、その基原植物を挙げることができる。
8	代表的なフラボノイドの構造を生合成経路に基づいて説明し、その基原植物を挙げることができる。
9	代表的なフェニルプロパノイドの構造を生合成経路に基づいて説明し、その基原植物を挙げることができる。
10	代表的なポリケチドの構造を生合成経路に基づいて説明し、その基原植物を挙げることができる。

回数	担当	内 容	対応 (SBOs)
]	竹谷、一栁	生薬学の目的、天然医薬品化学の歴史など	1
2	//	新薬開発における生薬及び生薬成分の利用について	2
3	//	生薬成分の分離・構造決定法について	3
4	//	生薬成分の生合成経路について	4
5~6	//	生理活性を有する成分各論(テルペン類・ステロイド)	5
7	//	生理活性を有する成分各論(配糖体:サポニン、強心配糖体、 グルコシノレート、青酸配糖体など)	6
8~9	//	生理活性を有する成分各論(フェノール性成分:クマリン、 フラボン、タンニン、リグナンなど)	8, 9
10	//	生理活性を有する成分各論(キノン類:ベンゾキノン、ナフトキノン、アントラキノン、フェナントラキノンなど)	10
11 ~ 13	//	生理活性を有する成分各論(アルカロイド:キニーネ、ニコチン、モルヒネ、ベルベリン、アトロピン、バッカクアルカロイドなど)	7

XI 実習科日 授業で行っている工夫: 復習に役立つプリントを配布する。教科書等に記載されていない情報を随時提供する。

モデル・コアカリ: C2 化学物質の分析 (2) クロマトグラフィー

キュラムとの関連 C4 化学物質の性質と反応 (4) 化学物質の構造決定

C7 自然が生み出す薬物 (1)薬になる動植鉱物、(2)薬の宝庫としての天然物

成績評価方法:1) 形成的評価 a) 知識:講義中に質問等を行う。

c) 態度: 出席状況、受講態度を総合的に評価する。

2) 総括的評価 a) 知識: 定期試験により評価する。

c)態度:出席状況、受講態度を総合的に評価する。

教 科 書:パートナー天然物化学(海老塚、森田編 南江堂)

参考: 天然物化学(川崎、西岡編 廣川書店)

生薬学(北川編 廣川書店)

オフィスアワー: 原則的にいつでも可。

所属教室:天然医薬品化学教室研究1号館2階

1

医薬品化学Ⅱ Medicinal Chemistry II

 学年
 第3学年
 科目分類
 必修
 前期・後期後期
 後期
 単位

 教授
 田口
 武夫(A・B、E・F)

 教授
 林
 良雄(C・D、G・H)

学習目標 (GIO)

医薬品化学 II と4年次前期の総合化学演習ではこれまでに学んできた有機化学の知識をさらに深めるとともに新しい内容として転位反応などを取り上げて、医薬品の構造と性質、合成法について総合的に学ぶことを目的とする。医薬品化学 II では、酸化と還元、エステル化・アミド化・加水分解に関する化学的および酵素的(薬物代謝)反応の特徴や官能基の導入・変換(合成化学)についての知識を習得することを目標とする。さらに医薬品の構造と性質に関連して複素環化合物について学ぶ。

┃ 行動目標 (SBOs)

1	エステル化・アミド化・加水分解について試薬の反応性や機構的特徴を説明できる。
2	代表的な酸化反応と酸化剤について説明できる。
3	代表的な還元反応と還元剤について説明できる。
4	複素環の名称と構造について正しく示すことができる。
5	医薬品の部分構造としての複素環の名称と性質を説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1-6	田口、林	エステル化・アミド化・加水分解	1
7-9	//	酸化反応と酸化剤	2
10-11	//	還元反応と還元剤	3
12-14	//	複素環化合物の化学	4, 5

授業で行っている工夫:要点および演習課題を盛り込んだプリントを配布。中間試験を行うことにより、学生の学習への取り組みを促し、到達度を確認。

モデル・コアカリ: 主として、C4化学物質の性質と反応およびC5ターゲット分子の合成のなかの内容を含んでいる。 キュラムとの関連

成績評価方法: 出席および試験成績による評価。

教 書:有機医薬品合成化学(樹林、田口、長坂編 広川書店)

参 考 書:マクマリー有機化学

演習問題を含むプリント配布

オフィスアワー:田口 武夫 原則いつでも可。事前連絡が望ましい。 教授室

林 良雄 原則いつでも可。事前連絡が望ましい。 教授室

所属教室:田口武夫有機合成化学教室研究2号館3階304

林 良雄 薬品化学教室 研究2号館3階305

病原微生物学 Pathogenic Microbiology

学年 第3学年 科目分類 必修 前期·後期前期 単位 1

准教授 野口 雅久 病原微生物学教室(A·B、C·D、E·F、G·H)

学習目標 (GIO)

本講義では感染症の予防と治療について、基礎的な理解を深めるために、代表的な感染症とその原因である病原微生物に関する基礎的知識を修得する。

┃ 行動目標 (SBOs)

1	主なDNAウイルス(サイトメガロウイルス、EBウイルス、ヒトヘルペスウイルス、アデノウイルス、パルボウイルスB19、B型肝炎ウイルス)が引き起こす代表的な疾患について概説できる。
2	主なRNA ウイルス(ポリオウイルス、コクサッキーウイルス、エコーウイルス、ライノウイルス、A型肝炎ウイルス、C型肝炎ウイルス、インフルエンザウイルス、麻疹ウイルス、ムンプスウイルス)が引き起こす代表的な疾患について概説できる。
3	レトロウイルス(HIV、HTLV)が引き起こす疾患について概説できる。
4	グラム陽性球菌(ブドウ球菌、レンサ球菌)の細菌学的特徴とそれが引き起こす代表的な疾患について概説 できる。
5	グラム陰性球菌(淋菌、髄膜炎菌)の細菌学的特徴とそれが引き起こす代表的な疾患について概説できる。
6	グラム陽性桿菌(破傷風菌、ガス壊疽菌、ボツリヌス菌、ジフテリア菌、炭疽菌)の細菌学的特徴とそれが 引き起こす代表的な疾患について概説できる。
7	グラム陰性桿菌(大腸菌、赤痢菌、サルモネラ菌、チフス菌、ペスト菌、コレラ菌、百日咳菌、腸炎ビブリオ菌、 緑膿菌、ブルセラ菌、レジオネラ菌、インフルエンザ菌)の細菌学的特徴とそれが引き起こす代表的な疾患 について概説できる。
8	グラム陰性スピリルム属病原菌(ヘリコバクター・ピロリ菌)の細菌学的特徴とそれが引き起こす代表的な 疾患について概説できる。
9	抗酸菌(結核菌、非定型抗酸菌)の細菌学的特徴とそれが引き起こす代表的な疾患について概説できる。
10	スピロヘータ、マイコプラズマ、リケッチア、クラミジアの微生物学的特徴とそれが引き起こす代表的な疾患について概説できる。
11	真菌(アスペルギルス、クリプトコックス、カンジダ、ムーコル)の微生物学的特徴とそれが引き起こす代表的な疾患について概説できる。
12	代表的な原虫、寄生虫の代表的な疾患について概説できる。
13	プリオン感染症の病原体の特徴と発症機序について概説できる。

回数	担 当	内 容	対応 (SBOs)
1	笹津	総論(微生物と感染症) 細菌学各論(1)グラム陽性球菌	4
2	//	細菌学各論(2)グラム陰性球菌	5
3	//	細菌学各論 (3) グラム陽性桿菌	6
4	//	細菌学各論(4)抗酸菌	9
5	//	細菌学各論(5)グラム陰性桿菌(1)	7
6	//	細菌学各論(6)グラム陰性桿菌(2)	7

VI

回数	担 当	内 容	対応 (SBOs)
7	//	細菌学各論(7)グラム陰性桿菌(3)	7
8	//	細菌学各論(8)嫌気性菌・ラセン菌	8、10
9	//	ウィルス学各論(1)DNA ウィルス	1
10	//	ウィルス学各論(2)RNA ウィルス(1)	2
11	//	ウィルス学各論(3)RNA ウィルス(2)	2, 3
12	//	プリオン・真菌各論	11, 13
13	//	原虫・寄生虫各論	12
13	//	原虫・寄生虫各論	12

モデル・コアカリ: モデル・コアカリキュラムに書かれている微生物関連の知識は最小のものであり、医療現場で必 キュラムとの関連 要な知識は全て講義する。

成績評価方法: 受講態度(2/3以上の出席) および定期試験の成績(原則として60%以上を合格)を加味して評価する。

教 科 書:新しい微生物学 第3版(広川書店)参 考 書:戸田新細菌学(吉田、柳編 南山堂)

医学系微生物学(加藤延夫編 朝倉書店)

Topley & Wilson\'s Microbiology and Microbial Infections 9ed

オフィスアワー: 前期、病原微生物学の講義終了後 病原微生物学教室 研究2号館506号

教員からの一言: 教科書に従って講義を進めるので、必ず教科書を持参し、必要な事は教科書に記入する事。試験 前に教科書を読み直す事だけで、復習ができる。

臨床免疫学

Clinical Immunology

年 第3学年 科目分類 必 修 前期・後期 前 授 大野 尚仁(A·B、C·D、E·F、G·H)

学習目標 (GIO)

教

生体はさまざまな仕組みを用いて恒常性を維持している。これらの仕組みの中で、病原微生物に よってもたらされる感染症や悪性腫瘍などに対し、これを排除するために中心となって働くのは 免疫機構(あるいは生体防御機構)である。この免疫機構・生体防御機構は原始的な生物からヒ トまで広く備わっている。本講義では、2年次に"免疫学"で修得した免疫に関わる基礎的な知識 (免疫組織、細胞、因子など)を基盤として、感染、移植、腫瘍、アレルギーなど、免疫の維持と 関連疾患について病態と治療法を学ぶ。

期

単 位

1

▋行動目標 (SBOs)

1	自然免疫、獲得免疫、受動免疫、能動免疫について説明できる。
2	体液性免疫、細胞性免疫について説明できる。
3	移植片の拒絶と生着の機構を説明できる。
4	GVH反応について説明できる。
5	腫瘍と宿主免疫系との相互関係について説明できる。
6	感染症に関わる免疫機構について説明できる。
7	免疫・神経・内分泌の関係について説明できる。
8	免疫抑制薬、免疫増強薬について説明できる。
9	アレルギー疾患の病態と治療法について説明できる。
10	免疫学的自己非自己を制御する仕組みを説明できる。
11	免疫学的自己非自己の制御が破綻する仕組みを説明できる。
12	自己免疫疾患の病態と治療法について説明できる。
13	免疫不全の病態と治療法について説明できる。
14	免疫増殖性症候群の病態と治療法について説明できる。
15	免疫検査について説明できる。

回数	担 当	内 容	対応 (SBOs)
1	大野	はじめに、自然免疫、獲得免疫、受動免疫、能動免疫	1, 2
2	//	移植免疫	3、4
3	//	腫瘍免疫	5
4	//	感染免疫	6
5	//	免疫の維持に関わるさまざまな要素	7
6	//	免疫系に作用する薬物 (1) 免疫増強薬	8
7	//	免疫系に作用する薬物 (2) 免疫抑制薬	8

3
XI
実
習
科

回数	担 当	内 容	対応 (SBOs)
8	//	アレルギー(1)Ⅰ型-Ⅳ型アレルギー	9
9	//	"アレルギー(2)代表的なアレルギー疾患の病態と治療	
10	//	自己免疫疾患(1) 自己免疫疾患の発症機構	10, 11
11	//	自己免疫疾患(2)代表的な自己免疫疾患の病態と治療	12
12	//	免疫不全·免疫增殖性症候群	13、14
13	//	総合演習	

授業で行っている工夫: 1. すべてのppt ファイルは公開している。前年度のファイルを見ることで、講義全体の流れを知ることができ、また予習復習に役立てることができる。あらかじめキーワードのリストを「講義のポイント」として配布し、講義の目標を明確にしている。レポート提出を複数回実施し、自ら調査して報告書を作成することを経験してもらっている。

モデル・コアカリ: C9 生命をミクロに理解する(5) サイトカイン・増殖因子・ケモカイン

キュラムとの関連 C10 生体防御(1)身体をまもる

C13 薬の効くプロセス (2) 薬の効き方 I 〈呼吸器系に作用する薬物〉、(3) 薬の効き方 I 〈ホルモンと薬〉〈血液・造血器系に作用する薬物〉〈炎症・アレルギーと薬〉

C14 薬物治療(3)疾病と薬物治療〈呼吸器・胸部の疾患〉〈神経・筋の疾患〉(4)疾病と薬物治療〈皮膚疾患〉〈骨・関節の疾患〉〈アレルギー・免疫疾患〉〈移植医療〉〈抗悪性腫瘍薬〉

C17 医薬品の開発と生産(3)バイオ医薬品とゲノム情報〈組換え体医薬品〉〈疾患関連遺伝子〉

成績評価方法:1)形成的評価

a) 知識:レポート作成を通じて、解釈ならびに問題解決レベルの知識を醸成する。

2) 総括的評価

a) 知識:定期試験、出席点、提出物を総合的に評価する。

c) 態度: 出席ならびに提出物の作成状況について期間を通じて改善が認められれば合とする。

教 科 書:免疫学概説(宿前ら 廣川書店)

参考:免疫生物学(笹月監訳 南江堂)

免疫学イラストレイテッド(多田監訳 南江堂)

免疫のしくみー免疫学入門ー(大沢利昭訳 東京化学同人)

免疫学の基礎(小山次郎、大沢利昭 東京化学同人)

免疫学辞典(大沢利昭ら編 東京化学同人)

医系免疫学(矢田純一著 中外医学社)

医科免疫学(菊池、上出編 南江堂)

標準免疫学(谷口克、宮坂昌之編 医学書院)

カラー図説免疫(笹月健彦監訳 メディカルサイエンスインターナショナル)

オフィスアワー: いつでも可。 ただし、メールにて予約すること。

所属教室:免疫学教室研究2号棟505号

教員からの一言: 講義対応Web http://www1.ttv.ne.jp/~ohno-nfs/(大学Web"免疫学教室"からリンクあり)

講義対応Webに前年の同科目の講義ファイルが公開されています。これらを見て予習しておくことを勧めます。

バイオ医薬品とゲノム情報

Genome-based Biopharmaceutics in Medicine

単 位

1

 学年
 第3学年
 科目分類
 必修
 前期・後期

 教授
 豊田 裕夫(C·D、E·F)

准教授 **佐藤 隆** (A · B、G · H)

講師 内手 昇(C·D、E·F)

学習目標 (GIO)

ポストゲノム時代を迎え、医療におけるバイオテクノロジーの応用は広範囲にわたっている。当該科目においては、生化学Ⅰ、ⅡおよびⅢにおいて修得した知識を統合し、遺伝子情報に基づく遺伝子操作法への理解を深め、遺伝子診断・治療、テーラーメード医療、ゲノム創薬および再生医療の概念を修得する。さらに、バイオテクノロジーを駆使した細胞治療、遺伝子治療および分子標的薬などによる難治性疾患治療に関する知識と具体例を修得する。

前期

▋行動目標 (SBOs)

1	遺伝子工学に用いられる基本的技術(遺伝子クローニング、遺伝子導入、トランスジェニック、遺伝子ノックアウト、遺伝子ノックインなど)について概説できる。
2	遺伝子工学に基づくバイオ医薬品(人工タンパク質、リボザイム、アンチセンス、ペプチド核酸、分子標的薬など)について具体例を挙げて説明できる。
3	遺伝子診断法の概要とその具体例を説明できる。
4	テーラーメード医療について概説できる。
5	遺伝子治療の概要とその具体例を説明できる。
6	ゲノム創薬の概念について説明できる。
7	ゲノム創薬に関する用語(マイクロアレイ、バイオチップ、プロテオミクスなど)を説明できる。
8	再生医療の概念とその具体例について説明できる。
9	細胞治療の概念とその具体例について説明できる。
10	遺伝性疾患について概説できる。
11	多因子性遺伝性疾患について例を挙げて説明できる。
12	発ガン遺伝子およびガン抑制遺伝子について説明できる。

回数	担 当	内 容	対応 (SBOs)
1	佐藤、内手	遺伝子工学概論	1~12
2~3	//	遺伝子工学に用いられる基本的技術概論	1
4	//	遺伝子工学に基づくバイオ医薬品概論	1、2、6、7
5	//	遺伝子診断概論	3~5, 10~12
6	//	テーラーメード医療概論	3~5,8~12
7	//	再生医療概論	4, 8~12
8	//	細胞治療概論	4, 8~12
9	豊田、佐藤	遺伝性疾患概論	4, 5, 10~12
10	//	多因子性遺伝性疾患概論	4, 5, 10~12

3	ZΤ
_	77
3	旲
Ž	
末	3

回数	担 当	内 容	対応 (SBOs)
11	//	遺伝子治療概論	1, 6, 8~12
12	//	発ガン遺伝子概論	3, 5, 6, 10~12
13	//	ガン抑制遺伝子概論	3, 5, 6, 10~12
14	//	薬学領域における遺伝子工学の応用-まとめ-	1~12

授業で行っている工夫: 1.1 年生前期の「生物学」および「細胞生物学」、1 年生後期の「生化学 I 」、2 年生の「生化学 II」 および「生化学Ⅲ」、さらに3年生の「バイオ医薬品とゲノム情報」および「生化学実習」を生物系の関連科目、すなわち基礎から応用までステップアップする講義と捉え、一貫性を重視し講義の理解度を上げることを工夫している。一方、限られた講義時間を効率よく利用するために講義の重複部分についても必要・不要等の調整をおこなっている。

- 2.バイオ医薬品とゲノム情報の講義内容を理解するために、 $1\sim 2$ 年次で履修した生物系関連科目(細胞生物学、生化学 I 、 I および II)の理解度チェック・復習をWeb クラスにて実施している。
- 3.Webクラスを利用して、講義に使用する補助プリンおよび講義スライドの一部を配布して、事前学習を可能にしている(佐藤担当クラス)。
- 4. 新聞、雑誌等からの「サイエンス・トピックス」紹介やビデオ学習を取り入れ、学習内容と最新の科学や医療とを関連づけ、理解する工夫をしている(佐藤担当クラス)。
- 5.中間レポート提出などで授業内容の理解度を深める工夫をしている(豊田、内手担当クラス)。

モデル・コアカリ: C9 生命をミクロに理解する(2)生命情報を担う遺伝子(6)遺伝子を操作する

キュラムとの関連 C17 医薬品の開発と生産(3)バイオ医薬品とゲノム情報

成績評価方法:1) 形成的評価 a) 知識:WebClassに提示した演習問題に毎週取り組む。

2)総括的評価 a)知識:定期試験の成績、受講態度(出席状況)、レポートを加味して総合的に評価する。なお、出席不良者に対しては受験停止の措置を講ずることがある。

教 書:薬学領域の生化学(伊東、藤木編著 廣川書店) およびプリント。

参考書:生物系薬学Ⅱ 生命をミクロに理解する(日本薬学会編 東京化学同人)

医薬分子生物学 (野島博著 南江堂)

ヒトゲノムの分子遺伝学(清水信義監訳 医学書院)

The Cell細胞の分子生物学 第4版(Albertsら編 Newton Press)

オフィスアワー: 豊田 原則としていつでも可。 ただし要事前連絡。

佐藤 原則としていつでも可。 ただし要事前連絡。 内手 原則としていつでも可。 ただし要事前連絡。

所属教室: 豊田 臨床ゲノム生化学教室 研究2号棟6階 606号

佐藤 生化学・分子生物学教室 研究2号棟6階 605号 内手 臨床ゲノム生化学教室 研究2号棟6階 606号

生活環境と健康 Environmental Health

学年 第3学年 科目分類 必修 前期・後期 前期 単位 1

教 授 **別府 正敏** (A·B、C·D、E·F、G·H)

学習目標 (GIO)

生活環境や生態系を保全、維持するために、それらに影響を及ぼす自然現象、人間の活動を理解し、 環境汚染物質の発生源や成因、人体への影響、汚染防止、汚染除去などに関する基本的知識と手 法を修得し、環境の改善に向かって努力する態度を身につける。

┃ 行動目標 (SBOs)

1	地球環境の成り立ちについて概説できる。
2	生態系の構成員を列挙し、その特徴と相互関係を説明できる。
3	人の健康と環境の関係を人が生態系の一員であることをふまえて説明できる。
4	地球規模の環境問題の成因、人に与える影響について説明できる。
5	食物連鎖を介した化学物質の生物濃縮について具体例を挙げて説明できる。
6	化学物質の環境内動態と人の健康への影響について例を挙げて説明できる。
7	環境中に存在する主な放射性核種(天然、人工)を挙げ、人の健康への影響について説明できる。
8	電離放射線の種類を列挙し、その特徴と生体に及ぼす影響について説明できる。
9	電離放射線および放射性核種の標的臓器・組織を挙げ、その感受性の差異を説明できる。
10	電離放射線の生体影響に変化を及ぼす因子(酸素効果など)について説明できる。
11	非電離放射線の種類を列挙できる。
12	紫外線の種類を列挙し、その特徴と生体に及ぼす影響について説明できる。
13	赤外線の種類を列挙し、その特徴と生体に及ぼす影響について説明できる。
14	原水の種類を挙げ、特徴を説明できる。
15	水の浄化法について説明できる。
16	水の塩素処理の原理と問題点について説明できる。
17	水道水の水質基準の主な項目を列挙し、説明できる。
18	下水処理および排水処理の主な方法について説明できる。
19	水質汚濁の主な指標を水域ごとに列挙し、その意味を説明できる。
20	DO、BOD、CODの測定法を説明できる。
21	富栄養化の原因とそれによってもたらされる問題点を挙げ、対策を説明できる。
22	空気の成分を説明できる。
23	主な大気汚染物質を列挙し、その推移と発生源について説明できる。
24	主な大気汚染物質の濃度測定法と健康影響について説明できる。
25	大気汚染に影響する気象要因(逆転層など)を概説できる。
26	室内環境を評価するための代表的な指標を列挙し、説明できる。
27	室内環境の健康との関係について説明できる。
28	室内環境の保全のために配慮すべき事項について説明できる。
29	シックハウス症候群について概説できる。
30	廃棄物の種類を列挙できる。
31	廃棄物処理の問題点を列挙し、その対策を説明できる。
32	医療廃棄物を安全に廃棄、処理する方法を説明できる。

33	マニフェスト制度について説明できる。
34	PRTR法について概説できる。
35	典型七公害とその現状、および四大公害について説明できる。
36	環境基本法の理念を説明できる。
37	大気汚染を防止するための法規制について説明できる。
38	水質汚濁を防止するための法規制について説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	別府	地球環境の成り立ち、生態系の構造と特徴	1, 2, 3, 5, 21
2~3	//	化学物質の環境内動態と健康(重金属、有機合成化合物、化 学物質事前審査制度、POPsによる環境汚染など)	5、6
4~5	//	地球規模の環境問題(オゾン層破壊、酸性雨、地球温暖化、 海洋汚染など)	4
6	//	環境中の放射性核種と健康影響(非電離放射線、電離放射線の生体影響)	7、8、9、10、11、 12、13
7	//	廃棄物(種類、関連法及び制度、現状が抱える問題点)	30、31、32、33、 34
8	//	環境保全(公害とその防止対策、環境基本法、各種の法規制)	35、36、37、38
9~11	//	水環境(水の衛生、水質汚濁、下水処理)	14、15、16、17、 18、19、20、38
12~13	//	大気環境(大気汚染、発生要因)	22、23、24、25、 37
14	//	室内環境(各種指標)	26、27、28、29

授業で行っている工夫:衛生薬学の視点から、生活環境や地球環境のかつての状況、現在の状況を理解させるとともに、 その保全策、改善策についても考えさせる教育を目指している。

環境関連分野では法令や各種の制度が頻繁に制定、改廃されるので、速やかに新しい情報を提供するようにしている。例えば、教科書改訂後に行われた環境関連の法改正などについては作成した新資料を配付するようにしている。

モデル・コアカリ: C12 環境(1) 化学物質の生体への影響【電離放射線の生体への影響】【非電離放射線の生体へキュラムとの関連の影響】

C12 環境(2)生活環境と健康

成績評価方法: 試験成績を主とし、出席状況を考慮して評価する。

教 科 書:最新衛生薬学(別府、平塚編 廣川書店)

参考書:衛生試験法・注解2010(日本薬学会編金原出版)

必携 · 衛生試験法 (日本薬学会編 金原出版)

図説 国民衛生の動向2010/2011 (財団法人 厚生統計協会)

オフィスアワー: 別府 在室時は不都合でない限り質問受付

所属教室:別府環境生体応答学教室研究1号館401号

栄養素の化学 Nutrient Chemistry

学 年	第3学年	科目分類	必 修	前期・後期	前 期	単 位	1
准教授	早川磨紀男(A	\cdot B、C \cdot D)	黄 師 安藤	藤 堅 (E·F、	G·H)	

学習目標 (GIO)

人とその集団の健康維持、向上に貢献できるようになるために、栄養素に関する科学的理解を深 めるとともに、食品の安全性についての基本的知識を修得する。

▋行動目標 (SBOs)

1	栄養素(三大栄養素、ビタミン、ミネラル)を列挙し、それぞれの役割について説明できる。
2	各栄養素の消化、吸収、代謝のプロセスを概説できる。
3	脂質の体内運搬における血漿リポタンパク質の栄養学的意義を説明できる。
4	食品中のタンパク質の栄養的な価値(栄養価)を説明できる。
5	エネルギー代謝に関わる基礎代謝量、呼吸商、推定エネルギー必要量の意味を説明できる。
6	栄養素の摂取基準について説明できる。
7	日本における栄養摂取の現状と問題点について説明できる。
8	栄養素の過不足による主な疾病を列挙し、説明できる。
9	代表的な保健機能食品を列挙し、その特徴を説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	早川、安藤	三大栄養素(糖質)	1
2	//	三大栄養素(脂質)	1, 3
3	//	三大栄養素(タンパク質)	1, 4
4	//	栄養素(脂溶性ビタミン)	1
5	//	栄養素(水溶性ビタミン)(1)	1
6	//	栄養素(水溶性ビタミン)(2)	1
7	//	栄養素(ミネラル)	1
8	//	栄養素の消化・吸収・代謝	2, 3
9	//	エネルギー代謝、食事摂取基準	5, 6
10	//	食品の栄養価	6、7
11	//	栄養摂取の現状と問題点	6、7、8
12	//	食品成分の表示	6、7、9
13	//	新しい形態の食品	9

授業で行っている工夫: 栄養と健康、食品にまつわる社会問題について、学生自らにテーマを選ばせ、レポートとして報

告させることにより、問題意識の確立と客観的判断能力の育成に努めている。

モデル・コアカリ: C11 健康 (1) 栄養と健康

キュラムとの関連

成 績 評 価 方 法: 1) 形成的評価 a) c) 知識および態度: 学生が栄養と健康に関するテーマを自主的に定めて調 査を行い、レポートとして提出させる。

2) 総括的評価 a) 知識:レポートと定期試験により評価する。

c) 態度:出席、レポート提出状況などから総合的に評価する。

科 書:最新衛生薬学(別府正敏、平塚明編集 廣川書店) 教

考 書:特に指定しない。

オフィスアワー: 早川 前期 火曜日 15:00~17:00 衛生化学教室 研究棟 1 号館 402-2号

安藤 前期 月曜日 15:00 ~ 17:00 衛生化学教室 研究棟 1 号館 402 - 2 号

室:早川 衛生化学教室 研究棟1号館402-2号 教

安藤 衛生化学教室 研究棟 1 号館 402 - 2号

化学物質と生体影響

必

Drug Metabolism and Molecular Toxicology

単 位

 学 年
 第3学年
 科目分類

 教 授 平塚
 明(A·B、C·D)

准教授 **小倉健一郎** (E·F) 講師 **西山 貴仁** (G·H)

学習目標 (GIO)

我々の身の回りには、栄養素や生体成分などの生体維持にとって不可欠な物質以外に、外来物質あるいは異物と呼ばれる多種多様な化学物質が存在している。例えば、医薬品、食品添加物、農薬、香粧品など、我々が意図的に創製した化学物質の他、非意図的に創り出された多くの環境汚染物質や天然物質などが有る。これらの多種多様な異物は、飲食、呼吸、そして接触などにより体内に吸収されたのちに、各組織に運ばれ、分布し、そのままの型で有害作用あるいは薬理作用を発現するか、さらに代謝を受けてその作用を発現したのち、排泄される。このように多彩な化学物質の薬効・毒性を知るために、化学物質の吸収、分布、代謝、排泄(ADME)の基本的プロセスについて学習する。さらに、慢性毒性として最大の脅威である化学発癌について、代表的な発癌物質を例示しながらその発現機序について学ぶ。尚、食品や環境中に存在する化学物質の生体影響、毒性評価法、ならびに安全評価と規制については、4年次の健康と環境Ⅱで詳しく学ぶ。

前期・後期

後期

┃ 行動目標 (SBOs)

1	分子毒性学について概説できる。
2	代表的な有害物質の吸収、分布、代謝、排泄の基本的プロセスについて説明できる。
3	第 I 相反応が関わる代謝、代謝的活性化について概説できる。
4	薬物代謝第I相酵素について概説できる。
5	第Ⅱ相反応が関わる代謝、代謝的活性化について概説できる。
6	薬物代謝第Ⅱ相酵素について概説できる。
7	発癌性物質などの代謝的活性化の機構を列挙し、その反応機構を説明できる。
8	変異原性試験(Ames 試験など)の原理を説明できる。
9	発癌イニシエーションとプロモーションについて概説できる。
10	代表的な癌遺伝子と癌抑制遺伝子を挙げ、それらの異常と癌化との関連を説明できる。

回数	担 当	内 容	対応 (SBOs)
1	平塚、小倉、西山	分子毒性学総論	1
2	//	化学物質の体内動態	2
3	//	化学物質の体内動態	2
4	//	化学物質の生体内代謝	2
5	//	化学物質による組織障害 (毒性発現機序)	3, 5
6	//	薬物代謝第Ⅰ相反応	3
7	//	薬物代謝第Ⅰ相酵素の種類と特徴	4
8	//	薬物代謝第Ⅱ相反応	5, 6
9	//	薬物代謝第Ⅱ相酵素の種類と特徴	6

IV

回数 担当 対応 (SBOs) 内容 10 4, 6 // 薬物代謝酵素に影響を及ぼす因子 11 // 薬物代謝第Ⅰ相酵素による薬・毒物の代謝的活性化 3, 4, 7 12 // 薬物代謝第Ⅱ相酵素による薬・毒物の代謝的活性化 5, 6, 7 13 8, 9, 10 // 化学発癌(機序、発癌物質の種類)

授業で行っている工夫:出来るだけプロジェクターを使用した講義は避け、板書による講義を心がける。プロジェクター

の使用は、写真や複雑な図などの板書出来ないものに限って使用し、使用の際はプリントアウトしたものを配布する。板書には分かり易い図などを用いて理解を深めるような工夫を行う。講義内容では、講義毎に行動目標を伝えさらに行動目標に関連するキーワードを提示する。提示した複数のキーワードで1テーマを構成し5分から10分の短時間の講義を繰り返し行い講義に集中できるように心がける。更に、教科書に記載されていない実例を取り上げ、身近な話題として考えられるようにする。

モデル・コアカリ: C12 環境 (1) 化学物質の代謝・代謝的活性化、化学物質による発癌

キュラムとの関連 C13 薬の効くプロセス (4) 代謝

成績評価方法:1) 形成的評価 a) 知識:講義期間中に小テストや演習問題を行い、理解を進める。

c) 態度:講義期間中を通し出席および課題の提出を確認する。

2) 総括的評価 a) 知識: 定期試験、出席、提出物を総合的に評価する。

c) 態度:出席不良者および課題未提出者は受験停止とすることがある。

教 書:最新衛生薬学(別府、平塚編 廣川書店)

参考書:衛生薬学ー健康と環境ー(渡部、井村編 丸善)

医療薬物代謝学(鎌滝、高橋、山崎編 みみずく舍)

オフィスアワー: 平塚 いつでも可。 薬物代謝安全性学教室 研究棟403 但し、要事前連絡。

小倉 いつでも可。 薬物代謝安全性学教室 研究棟403-2号 但し、要事前連絡。 西山 いつでも可。 薬物代謝安全性学教室 研究棟403-3号 但し、要事前連絡。

所属教室: 平塚薬物代謝安全性学教室研究棟403

小倉 薬物代謝安全性学教室 研究棟403-2号

西山 薬物代謝安全性学教室 研究棟403-3号

1

単 位

食品と健康 Food and Health

科目分類

必修

准教授 **早川磨紀男** (E・F、G・H) 講師 **安藤 堅** (A・B、C・D)

第3学年

学習目標 (GIO)

年

健康維持に必要な食品の安全性を科学的に理解するために、食品の品質と管理、ならびに食品の 健康影響等に関する基本的知識を修得する。

前期・後期 後

期

▋行動目標 (SBOs)

1	農薬の安全性と残留基準について説明できる。
2	遺伝子組換え食品の現状を説明できる。
3	食品添加物の法的規制と問題点について説明できる。
4	代表的な食品添加物を用途別に列挙し、それらの働きを説明できる。
5	食品が腐敗する機構について説明できる。
6	油脂が変敗する機構を説明できる。
7	食品の褐変を引き起こす主な反応とその機構を説明できる。
8	食品の変質を防ぐ方法(保存法)を説明できる。
9	食品を介した感染症(経口感染症)を列挙し、それらの原因となる微生物の性質、作用機構、症状の特徴を
9	説明できる。
10	食中毒の種類を列挙し、発生状況を説明できる。
1 1	代表的な細菌性・ウィルス性食中毒を列挙し、それらの原因となる微生物の性質、症状、原因食品および予
1.1	防法について説明できる。
12	食中毒の原因となる自然毒を列挙し、その原因物質、作用機構、症状の特徴を説明できる。
13	代表的なマイコトキシンを列挙し、それによる健康障害について概説できる。
14	化学物質(重金属、残留農薬など)による食品汚染の具体例を挙げ、ヒトの健康に及ぼす影響を説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	安藤、早川	残留農薬による食品汚染	1
2	//	遺伝子組換え食品	2
3	//	食品添加物概説	3
4	//	食品添加物各論	4
5	//	食品の変質と腐敗	5、6、7
6	//	食品の安全性確保のための施策	8
7	//	経口感染症	9
8	//	微生物による食中毒(1)	10、11
9	//	微生物による食中毒(2)	11
10	//	自然毒による食中毒	12
11	//	マイコトキシン	13
12	//	食物中の発癌物質	12、14
13	//	環境汚染物質による食品汚染	14

授業で行っている工夫: 食品の安全性に関わる時事問題を適時取り上げ紹介することにより、学生に食と健康への関心を 高める機会を与えている。

モデル・コアカリ: C11 健康 (1) 栄養と健康

キュラムとの関連

成 績 評 価 方 法:1) 形成的評価 c) 態度:受講態度(出席状況等)により評価する。

2) 総括的評価 a) 知識:定期試験成績により評価する。

c) 態度:受講態度(出席状況等)により評価する。

教 科 書:最新衛生薬学(別府正敏、平塚明 編集 廣川書店)

オフィスアワー: 早川 後期 月曜日 15:00~17:00 衛生化学教室 研究棟1号館402-2号

安藤 後期 火曜日 15:00~17:00 衛生化学教室 研究棟 1号館402-2号

所属教室:早川衛生化学教室研究棟1号館402-2号

安藤 衛生化学教室 研究棟 1 号館 402 - 2 号

製剤工学

Pharmaceutical Technology

年 第3学年 科目分類 必修 前期・後期 前 期 単 位

高島 由季(A·B、C·D、E·F、G·H) 准教授 貴憲(A·B、C·D、E·F、G·H) 助 教 金沢

学習目標 (GIO)

医療に使用される薬物は、カプセル剤、錠剤、注射剤などのように製剤化されたものである。薬 剤学は、物理薬剤学、生物薬剤学、製剤工学、薬物送達システム学に分かれる。製剤化において は、薬物の化学的、物理学的、生物学的性質を明らかにし、薬剤学の知識を結集して、有効性と 安全性が高く、使用され易いように工夫された、患者に最適の優しい製剤(patient – friendly medicine) にする必要がある。また、医療現場での適正使用においても、製剤とその機能を正し く把握することは必須である。本科目では実際に製剤を合理的に製造するために、製剤工学の基 礎と理論及びその技術について実例を挙げて講義する。

1

┃ 行動目標 (SBOs)

_	
1	日本薬局方通則および製剤通則について説明できる。
2	代表的な剤形の種類と特徴を説明できる。
3	製剤設計の流れおよび研究開発製造における主な基準について説明できる。
4	代表的な医薬品添加剤の種類と性質について説明できる。
5	代表的な固形製剤の種類と性質について説明できる。
6	代表的な半固形製剤の種類と性質について説明できる。
7	代表的な液状製剤の種類と性質について説明できる。
8	代表的なエアゾール剤や吸入剤について説明できる。
9	代表的な無菌製剤の種類と性質について説明できる。
10	製剤化の単位操作および汎用される製剤機械について説明できる。
11	汎用される容器、包装の種類や特徴について説明できる。
12	代表的な製剤の有効性と安全性評価法について説明できる。
13	日本薬局方の製剤に関連する試験法を列挙し説明できる。

回数	担 当	内 容	対応 (SBOs)
1	高島	日本薬局方通則および製剤通則 製剤総論:剤形とその分類	1, 2
2	//	製剤総論:製剤設計とGMP、医薬品添加剤	3、4
3	//	固形製剤(散剤)、単位操作(粉砕、分級、混合)	5、10
4	//	固形製剤(顆粒剤)、単位操作(造粒、乾燥)	5、10
5	//	固形製剤(錠剤)、単位操作(打錠、コーティング)	5、10
6	//	固形製剤(丸剤、カプセル剤、マイクロカプセル)	5、10
7	//	半固形製剤(軟膏剤、貼付剤、パップ剤、坐剤)	6、10

7	л
1	Л
5	ŧ
Ž	
둓	

回数	担 当	内 容	対応 (SBOs)
8	//	液状製剤(生薬抽出製剤、シロップ剤)、エアゾール剤、吸入 剤	7、8、10
9	金沢	無菌製剤(注射剤、点眼剤、眼軟膏)	9、10
10	//	無菌製剤に用いる添加剤、滅菌法および無菌操作法	9、10
11	//	製剤プロセスの自動化・バリデーション、容器と包装	10, 11
12	//	局方の製剤試験法I	12、13
13	//	局方の製剤試験法Ⅱ	12、13

授業で行っている工夫:実際に病院や薬局で使用されている、最新の製剤について、その製剤技術、製造法および機械、

設備などを多くのスライド(補助テキスト)を用いて分かりやすく解説する。

モデル・コアカリ:「医薬品をつくる」の中の、主に、「C16 製剤化のサイエンス (2) 剤形をつくる」を講義する。

キュラムとの関連

属

教

所

成績評価方法: 出席および定期試験の成績によって総合的に評価する。

教 科 書:「最新薬剤学」第9版(廣川書店)参 考 書:「標準薬剤学」改訂第2版(南江堂)

日本薬学会編、スタンダード薬学シリーズ7「製剤化のサイエンス」(東京化学同人)

「物理薬剤学・製剤学ー製剤化のサイエンス」(朝倉書店)

オフィスアワー: 高島 在室のときはいつでも可。 金沢 在室のときはいつでも可。

室: 高島 製剤設計学教室 研究棟2号館3階 308-1号室

金沢 製剤設計学教室 研究棟2号館3階 308-4号室

特記事項: 教科書の補助テキストを生協で購入すること。

応用薬剤学 Applied Pharmaceutics

学 年 第3**学**年 科目分類 **必** 修 前期·後期 後 期 単 位 1

准教授 根岸 洋一 (A·B、C·D、E·F、G·H) 准教授 高島 由季 (A·B、C·D、E·F、G·H)

学習目標 (GIO)

薬剤学の基礎ならびに理論全般については、2年次科目「物理薬剤学」、「生物薬剤学」および3年次前期科目「製剤工学」で講義されている。本講義では、1.DDS研究の現状と臨床応用、2.医薬品開発における製剤化技術の応用を中心に、最近の研究例やトピックス、具体的問題の演習を交えて講義する。

▋行動目標 (SBOs)

1	従来の医薬品製剤の有効性、安全性、信頼性における主な問題点を列挙できる。
2	DDSの概念と有用性について説明できる。
3	代表的な放出制御型製剤(徐放性製剤を含む)を列挙し、その利点について説明できる。
4	代表的な徐放性製剤における徐放化の手段について説明できる。
5	代表的なプロドラッグを列挙し、そのメカニズムと有用性について説明できる。
6	代表的な標的指向型製剤を列挙し、その利点について説明できる。
7	代表的な核酸医薬の特徴と利点について説明できる。
8	代表的な抗体医薬の特徴と利点について説明できる。
9	代表的なDDS技術の導入が必要な疾患と薬物を列挙することができる。
10	代表的なドラッグキャリアーを列挙し、そのメカニズムを説明できる。
11	Tissue engineeringの原理、方法と手順を概説できる。
12	医薬品開発の各プロセスについて説明できる。
13	製剤の崩壊、溶解、薬物放出メカニズムと意義について説明できる。
14	難溶性化合物の溶解性改善の方法について説明できる。
15	薬物の分解速度に及ぼす要因について説明できる。
16	製剤の安定化について説明できる。
17	製剤の物理的・化学的安定化の方法について概説できる。
18	利便性製剤・キット製剤の概要と意義について説明できる。
19	在宅医療用製剤・テーラーメイド薬物治療用製剤の概要と意義について説明できる。

XI

授業内容

回数	担 当	内 容	対応 (SBOs)
1	根岸	DDSの基礎知識	1、2
2	//	放出制御型および標的指向型製剤について	3~6
3	//	核酸医薬および抗体医薬のDDS	7、8
4	//	バイオコンジュゲート医薬品の分子設計	9、10
5	//	疾患とDDS	3~6, 9, 10
6	//	Tissue engineering Ł DDS	9、11
7	高島	医薬品開発における製剤化研究プロセス(1)	12
8	//	医薬品開発における製剤化研究プロセス(2)	12
9	//	難溶性・難吸収性薬物の製剤化と評価(1)	12~14
10	//	難溶性・難吸収性薬物の製剤化と評価(2)	12~14
11	//	不安定薬物に対する製剤化技術	15~17
12	//	利便性製剤、テーラーメイド医療用製剤	18、19
13	根岸、高島	総合演習	1 ~ 19

授業で行っている工夫: あらかじめ目標とするキーワードを提示し、目標を明確にしている。

教科書への書き込みのチャンスを増やし、講義に集中できる工夫をしている。

モデル・コアカリ: C16 製剤化のサイエンス(1)製剤材料の性質、(2)剤形をつくる、(3) DDS

キュラムとの関連 C17 医薬品の開発と生産(1)医薬品開発と生産のながれ、(2)リード化合物の創製と最適化、

(3) バイオ医薬品とゲノム情報

成績評価方法: 出席と定期試験結果を総合して判断する。

教 科 書:生協にて販売するプリントを用いる。

参 考 書:最新薬剤学(第9版)(林、川島、乾編 廣川書店)

新薬剤学(辻編 南江堂)

製剤物理化学(井上、寺田著 廣川書店) 医薬品の安定性(吉岡著 南江堂) 注射薬調剤(矢後監修、黒山編 じほう) 図解で学ぶDDS (橋田監修、高倉編 じほう)

オフィスアワー: 在室の時はいつでも可。

所属教室: 高島 製剤設計学教室 研究棟2号館3階

根岸 薬物送達学教室 研究棟 1 号館 3 階

特許・レギュラトリアルサイエンス

Patent and Regulatory Science

付

学年第3学年 科目分類 必修

教授 林正弘(A·B、C·D、E·F、G·H) 教授 平塚明(A·B、C·D、E·F、G·H)

学習目標 (GIO)

レギュラトリーサイエンスの概念は、限りなく進歩する科学技術を、社会や人間と調和の取れた最も望ましい姿として、発展させるために、科学と人間との間を正しくレギュレート(調整)する新しい科学分野である。特に、再生医療、細胞治療、遺伝子治療といった先端科学、ゲノム科学を取り入れた臨床研究、あるいは新たな感染症対策などの分野では、最新の科学的技術・知識に基づく予測・評価を行うと共に社会との調和を図ることが何よりも重要である。そのように考えると、レギュラトリーサイエンスは広義には「評価科学」と呼べる。また、患者から見て真に優れた医薬品が薬物療法の現場で活用されるには、医薬品の一生、すなわち探索、開発、製造、製剤設計、前臨床、治験、審査承認、市販後安全対策、適正使用等の各段階において、それぞれの当事者によって、レギュラトリーサイエンスの概念に基づいて行われる適切な評価・調整が必要であり、どこか一つの段階で適切さが欠ければ、安心安全で有効な医薬品は期待できない事となる。そういう意味では、レギュラトリーサイエンスは狭義には「行政科学」あるいは「適正規制科学」という意味づけが最も理解しやすい。本科目では、将来患者さんに安全で適切な医薬品の提供が出来る薬剤師になるために、医薬品の誕生から適正使用までに対する適切な評価・調整に関する知識を習得し、さらに発展途上にあるレギュラトリーサイエンスの学問としての重要性を理解する。

前期・後期

後

講師紹介

横浜 重晴 沢井製薬株式会社研究開発本部 常務取締役開発本部長

安藤 剛 東京大学医学部附属病院トランスレーショナルリサーチセンター

橋渡し研究支援推進プログラム特任講師

石井 友里 独立法人医薬品医療機器総合機構健康被害救済部調査課

園部 尚 静岡県立大学名誉教授

行動目標 (SBOs)

1	古典的な医薬品開発から理論的な創薬への歴史について概説できる。
2	医薬品開発を計画する際に考慮すべき因子を列挙できる。
3	医薬品開発の標的となる代表的な生体分子を列挙できる。
4	医薬品と標的生体分子の相互作用を、具体例を挙げて立体化学的観点から説明できる。
5	代表的なスクリーニング法を列挙し、概説できる。
6	医療医薬品で日本市場および世界市場での売上高上位 10位に入る医薬品を列挙できる。
7	ジェネリック医薬品の社会的役割について概説できる。
8	非臨床試験の目的と実施概要を説明できる。
9	臨床試験の目的と実施概要を説明できる。
10	医薬品の販売承認申請から、承認までのプロセスを説明できる。
11	市販後調査の制度とその意義について説明できる。
12	治験に関してヘルシンキ宣言が意図するところを説明できる。
13	医薬品創製における治験の役割を説明できる。
14	治験(第Ⅰ、Ⅱ、およびⅢ相)の内容を説明できる。
15	代表的な薬害について、その原因と社会的背景を概説できる。
16	薬害を回避するための方策について述べることができる。
17	医薬品の品質管理の意義と薬剤師の役割について説明できる。
18	GLP、GMP、GCP、GQP、GVP、GPSPについて概説できる。
19	組換え体医薬品の特色と有用性を説明できる。
20	代表的な組換え体医薬品を列挙できる。
	·

21	組換え体医薬品の安全性について概説できる。
22	ヒトゲノムの構造と多様性を説明できる。
23	ゲノム情報の創薬への利用について、代表例を挙げて説明できる。
24	ゲノム創薬の流れについて説明できる。
25	医薬品の創製における知的財産権について概説できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	林 正弘	レギュラトリーサイエンスの概念と講義概要	1 ~ 25
1	青柳 栄	医薬品創製の歴史	1
1	原博	医薬品開発と生産の流れの概要・医薬品開発のコンセプト	2~5
2	安藤剛	治験の意義と業務、医薬品の承認	8~14
2	横浜 重晴	医薬品市場と開発すべき医薬品、ジェネリック医薬品の役割 と現状	6、7
1	石井 友里	医薬品の副作用による健康被害問題	15、16
2	園部 尚	医薬品の製造と品質管理 (CMC を含む)、規範 (GLP、 GMP、GCP、GQP、GVP、GPSPの概略と意義	17、18
1	豊田 裕夫	バイオ医薬品とゲノム情報	19~24
1	岡田 弘晃	特許	25
1	平塚明	レギュラトリーサイエンスの今後の課題と展望	1 ~ 25

授業で行っている工夫:初回に本講義の概要を解説する。各講義担当者は、出きる限り理解しやすい資料を配布し、必要に応じて練習問題に回答させ、理解を深めるようにしている。さらに、最終回では全体の講義のまとめを行い、知識を整理し、問題解決能力の醸成に努めている。

モデル・コアカリ: C17 医薬品の開発と生産(1) 医薬品開発と生産の流れ、(2) リード化合物の創製と最適化、(3) キュラムとの関連 バイオ医薬品とゲノム情報、(4) 治験

成 績 評 価 方 法: 1) 形成的評価 a) 知識:練習問題を出題し、それに答えさせることにより、知識の確認を行う。 2) 総括的評価 a) 知識:定期試験、出席点を総合的に評価する。

教 科 書:使用しない

参考:日本薬学会編:スタンダード薬学シリーズ8「医薬品の開発と生産」(東京化学同人)

オフィスアワー:林 正弘 いつでも可。但し、要事前連絡。 教授室 平塚 明 いつでも可。但し、要事前連絡。 教授室

所属教室:林正弘薬物動態制御学教室研究1号館3階301教授室平塚明薬物代謝安全性学教室研究1号館4階403教授室

特記事項:「時間割」

後期火曜日2限と3限に3401講義室にて行う。2限は女子EFGH、3限は男子ABCD。

回数	月日	担当	回数	月日	担	当	回数	月日	担当
1回目	9月20日	林(正)	6回目	10月25日	横	浜	110目	12月 6日	岡田
2回目	9月27日	青柳	7回目	11月8日	横	浜	12回目	12月13日	豊田
3回目	10月 4日	原	8回目	11月15日	石	井		12月20日	(予備日)
4回目	10月11日	安藤	9回目	11月22日	園	部	13回目	1月10日	平塚
5回目	10月18日	安藤	10回目	11月29日	園	部		1月17日	(予備日)

教員からの一言: 安心・安全で有効なくすりが世の中に出ていく過程、さらにその過程にレギュラトリーサイエンスが如何に必要かについて、学内外の専門家が講義を行います。重要なポイントに関して資料が配布され、講義中には質問が出され、代表者が解答するという講義スタイルをとっています。講義を理解するためにも、代表者以外でも、解答できるようにしっかり講義を聴くように努力してください。

薬の効き方II Pharmacology II

学年 第3学年 科目分類 必修 前期・後期 前期

准教授 高木 教夫 (A·B、C·D、E·F、G·H)

学習目標 (GIO)

医薬品の作用する過程を理解するために、代表的な薬物の作用、作用機序、体内での運命、医療用途、および主な副作用に関する基本的知識を修得する。薬の効き方Ⅱでは、生理活性物質概論、薬の効き方Ⅰの内容に加えて、中枢神経系、消化管に作用する薬物、炎症治療薬について学習する。薬剤師としての職能に直結する重要な科目であり、機能形態学、生化学、免疫学、微生物学などで修得した広範囲の知識と効果的に連動させ、それらを応用して考える能力が要求される。

単 位

1

┃ 行動目標 (SBOs)

•	
1	中枢神経系の構造および神経伝達物質とその受容体を含めて生理機能を説明できる。
2	中枢神経系の主要な疾患の主症状と病態を説明できる。
3	代表的な全身麻酔薬を挙げ、薬理作用、機序、適用、主な副作用について説明できる。
4	代表的な催眠薬を挙げ、薬理作用、機序、主な副作用について説明できる。
5	代表的な統合失調症治療薬を挙げ、薬理作用、機序、適用、主な副作用について説明できる。
6	代表的なうつ病・躁病治療薬および抗不安薬を挙げ、薬理作用、機序、主な副作用について説明できる。
7	代表的なてんかん治療薬、中枢性筋弛緩薬を挙げ、薬理作用、機序、適用、主な副作用について説明できる。
8	代表的なパーキンソン病治療薬、アルツハイマー病治療薬を挙げ、薬理作用、機序、適用、主な副作用について説明できる。
9	代表的な中枢興奮薬、抗めまい薬、脳循環代謝改善薬を挙げ、薬理作用、機序、適用、主な副作用について 説明できる。
10	代表的な鎮痛薬を挙げ、薬理作用、機序、主な副作用について説明できる。
11	消化管の構造、機能、神経支配、ホルモンの作用、オータコイドの作用について説明できる。
12	代表的な消化薬、胃機能調整薬を挙げ、薬理作用、機序、適用、主な副作用について説明できる。
13	代表的な胃・十二指腸潰瘍治療薬を挙げ、薬理作用、機序、主な副作用について説明できる。
14	その他の消化性疾患に対する代表的治療薬を挙げ、薬理作用、機序、主な副作用について説明できる。
15	代表的な制吐薬、催吐薬を挙げ、機序、主な副作用について説明できる。
16	代表的な瀉下薬、止瀉薬を挙げ、機序、主な副作用について説明できる。
17	代表的な肝臓疾患治療薬を挙げ、薬理作用、機序、主な副作用について説明できる。
18	代表的な膵臓疾患治療薬を挙げ、薬理作用、機序、主な副作用について説明できる。
19	炎症の経過について説明できる。
20	代表的な非ステロイド性抗炎症薬を挙げ、薬理作用、機序、適用、主な副作用について説明できる。
21	代表的なステロイド性抗炎症薬を挙げ、薬理作用、機序、適用、主な副作用について説明できる。
22	代表的な抗リウマチ薬を挙げ、薬理作用、機序、適用、主な副作用について説明できる。
23	代表的な高尿酸血症・痛風治療薬を挙げ、薬理作用、機序、主な副作用について説明できる。
24	上記の薬物のうち代表的なものについて基本構造を示すことができる。
	·

▋授業内容

回数	担 当	内 容	対応 (SBOs)
1	高木	中枢神経系作用薬1:中枢神経系の構成と機能	1、2
2	//	中枢神経系作用薬2:全身麻酔薬	3、24
3	//	中枢神経系作用薬3:催眠薬	4、24
4	//	中枢神経系作用薬 4:統合失調症治療薬	5、24
5	//	中枢神経系作用薬5:抗うつ薬、抗そう薬、抗不安薬	6、24
6	//	中枢神経系作用薬6:抗てんかん薬、中枢性筋弛緩薬	7、24
7	//	中枢神経系作用薬 7:パーキンソン病治療薬、アルツハイマー 病治療薬	8、24
8	//	中枢神経系作用薬8:中枢興奮薬、抗めまい薬、脳循環代謝改 善薬	9、24
9	//	中枢神経系作用薬9:鎮痛薬	10、24
10	//	消化管作用薬 1:消化管の構造と機能、消化薬、胃機能調整薬、胃・十二指腸潰瘍治療薬	11~14,24
11	//	消化管作用薬2:制吐薬、催吐薬、瀉下薬、止瀉薬、肝臓・膵臓疾患治療薬	15~18,24
12	//	抗炎症薬 1:炎症の経過、非ステロイド性抗炎症薬、ステロイド性抗炎症薬	19~21,24
13	//	抗炎症薬2:抗リウマチ薬	22、24
14	//	高尿酸血症·痛風治療薬	23、24

授業で行っている工夫: ○毎回、講義の最初に進行予定範囲とキーワードを示し、何を学ぶか目標を明確にしている。

- ○機能形態学、生化学などで得た知識を可能な限り復習し、これら知識と病態、そして薬の効く プロセス(薬の効き方)を連動させて考え、応用力を養えるよう努めている。
- ○教科書等に未掲載の最新の作用機序や副作用情報、および新薬に関する情報は講義用補助プリントに随時反映させ、提供・解説している。

モデル・コアカリ: C13 薬の効くプロセス (薬の効き方) 【中枢神経系に作用する薬】、【化学構造】

キュラムとの関連 C13 薬の効くプロセス(薬の効き方 II)【消化器系に作用する薬】、【代謝系に作用する薬】、【代謝系に作用する薬】、【化学・ストルギュー・薬】【化学・ストルギュー・薬】【化学・ストルギュー・薬】【化学・ストルギュー・薬】【化学・ストルギュー・薬】

【炎症・アレルギーと薬】、【化学構造】

C14 薬物治療(疾患と薬物治療)【消化器系疾患】、【代謝性疾患】、【神経・筋の疾患】、 【精神疾患】、【骨・関節の疾患】

成 績 評 価 方 法: 定期試験成績および授業出席状況で総合評価する。出席不良者は定期試験の受験資格を失うことがある。

教 科 書:最新 薬の効き方 (愛智出版)

参考書:補助プリントを配布

New 薬理学(第5版)(加藤、田中編 南江堂)

新しい機能形態学―ヒトの成り立ちとその働き― (小林、馬場、平井編 廣川書店)

オフィスアワー: 高木 原則的にいつでも可 分子細胞病態薬理学教室 研究2号館504号

所属教室:高木分子細胞病態薬理学教室

疾病と薬物治療Ⅲ

Diseases and Pharmacotherapy III 期

単 位

前

年 第3学年 科目分類 必修 前期・後期

市田 公美 (A·B、C·D、E·F、G·H) 教 授 篠原 **佳彦**(A·B、C·D、E·F、G·H) 准教授

学習目標 (GIO)

疾病に伴う症状と臨床検査値の変化など的確な患者情報を取得し、患者個々に応じた薬の選択、 用法・用量の設定および各々の医薬品の「使用上の注意」を考慮した適正な薬物治療に参画でき るようになるために、薬物治療に関する基本的知識を修得する。疾病と薬物治療の(I)~(WI) のうち本講義では、代表的な腎疾患、泌尿・生殖器疾患に関して、その病態生理、臨床症状、検査・ 診断、治療および患者指導について学習する。さらに、治療に用いられる代表的な医薬品に関す る基礎的知識を修得する。

┃ 行動目標 (SBOs)

1	腎臓の解剖と機能について概説できる。
2	腎臓の代表的疾患を挙げることができる。
3	糸球体腎炎の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
4	ネフローゼ症候群の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
5	腎不全の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
6	痛風・高尿酸血症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
7	糖尿病性腎症、薬剤性腎症、尿細管障害、腎癌について概説できる。
8	泌尿・生殖器の代表的疾患を挙げることができる。
9	尿路感染症、尿路結石の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
10	前立腺肥大症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
11	前立腺癌、排尿障害、膀胱癌について概説できる。
12	乳癌の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
13	子宮癌、子宮内膜症、卵巣癌について概説できる。
14	異常妊娠、異常分娩、不妊について概説できる。

回数	担 当	内 容	対応 (SBOs)
1	市田	腎疾患の種類と病態および治療薬(1)	1
2	//	腎疾患の種類と病態および治療薬(2)	2、3
3	//	腎疾患の種類と病態および治療薬(3)	2、4
4	//	腎疾患の種類と病態および治療薬(4)	2, 5
5	//	腎疾患の種類と病態および治療薬(5)	2, 6
6	//	腎疾患の種類と病態および治療薬(6)	2、7
7	//	腎疾患の種類と病態および治療薬(7)	2、7
8	篠原	泌尿・生殖器疾患の種類と病態および治療薬(1)	8, 9

選3年次

XI

回数	担 当	内 容	対応 (SBOs)
9	//	泌尿・生殖器疾患の種類と病態および治療薬(2)	8、10
10	//	泌尿・生殖器疾患の種類と病態および治療薬(3)	8, 11
11	//	泌尿・生殖器疾患の種類と病態および治療薬(4)	8、12
12	//	泌尿・生殖器疾患の種類と病態および治療薬(5)	8, 13
13	//	泌尿・生殖器疾患の種類と病態および治療薬(6)	8, 14

授業で行っている工夫: 本講義内容は機能形態学や薬の効き方等の関連科目と密接な関係があるので、それらの科目を有機的に結びつけ、知識の定着と理解が深まるように工夫している。要点を整理し、図解を取り入れた補助プリントを配布し、学習しやすいように努めている。

モデル・コアカリ: C8 生命体の成り立ち(1) ヒトの成り立ち【泌尿器系】、【生殖器系】 キュラムとの関連 C8 生命体の成り立ち(3) 生体の機能調節【体液の調節機構】

C13 薬の効くプロセス (3) 薬の効き方

C14 薬物治療(1)体の変化を知る【症候と臨床検査値】

C14 薬物治療(2)疾患と薬物治療【腎臓・尿路の疾患】、【生殖器疾患】

成績評価方法: 出席と定期試験の結果により評価する。なお、受講態度によっては受験資格を失うことがある。

教 書:薬学生のための新臨床系医学(市田、細山田編 廣川書店)

参考書:疾病と病態生理(橋本、佐藤、豊島編 南江堂)

オフィスアワー: 市田、篠原 いつでも可。(市田は金曜日を除く)。ただし、要予約。 病態生理学教室、研究2 号館6階

所 属 教 室:市田 病態生理学 篠原 病態生理学

疾病と薬物治療IV

Diseases and Pharmacotherapy IV

学年 第3学年 科目分類 必修 前期·後期前期 単位 1

講師 **長谷川 弘**(A·B、C·D、E·F、G·H)

学習目標 (GIO)

疾病に伴う症状と臨床検査値の変化など的確に患者情報を取得し、患者個々に応じた薬の選択、用法・用量の設定および各々の医薬品の「使用上の注意」を考慮した適正な薬物治療に参画できるようになるために、疾病及び薬物治療に関する基本的知識を修得する。疾病と薬物治療(I)~(Ⅷ)のうち本講義では、代表的な消化器系疾患に関して、その病態生理、臨床症状、検査・診断、治療および患者指導について学習する。さらに、治療に用いられる代表的な医薬品に関する基本的知識を修得する。

▋行動目標 (SBOs)

Ī	1	
		RELUCIONAL CONTROL CON
	2	食道、胃・十二指腸疾患の代表的な治療薬、およびその使用上の注意について説明できる。
	3	腸の代表的な疾患(悪性腫瘍を含む)を列挙し、それらの病態生理、診断、治療を概説できる。
	4	腸疾患の代表的な治療薬、およびその使用上の注意について説明できる。
	5	肝臓·胆道·膵臓の代表的な疾患(悪性腫瘍を含む)を列挙し、それらの病態生理、診断、治療を概説できる。
	6	肝臓・胆道・膵臓疾患の代表的な治療薬、およびその使用上の注意について説明できる。

回数	担 当	内 容	対応 (SBOs)
1	長谷川	総論 消化器系疾患でみられる症候	1、3、5
2	//	消化管疾患 – 1 食道、胃・十二指腸疾患の病態および治療薬(1)	1, 2
3	//	消化管疾患 - 2 食道、胃・十二指腸疾患の病態および治療薬(2)	1, 2
4	//	消化管疾患 - 3 食道、胃・十二指腸疾患の病態および治療薬(3)	1, 2
5	//	消化管疾患-4 腸疾患の病態および治療薬(1)	3、4
6	//	消化管疾患-5 腸疾患の病態および治療薬(2)	3、4
7	//	消化管疾患-6 腸疾患の病態および治療薬(3)	3、4
8	//	肝・胆・膵疾患-1 肝疾患の病態および治療薬(1)	5, 6
9	//	肝・胆・膵疾患-2 肝疾患の病態および治療薬(2)	5, 6
10	//	肝・胆・膵疾患-3 肝疾患の病態および治療薬(3)	5, 6
11	//	肝・胆・膵疾患-4 肝疾患の病態および治療薬(4)	5, 6
12	//	肝・胆・膵疾患-5 胆・膵疾患の病態および治療薬(1)	5, 6
13	//	肝・胆・膵疾患-6 胆・膵疾患の病態および治療薬(2)	5, 6
14	//	肝・胆・膵疾患-7 胆・膵疾患の病態および治療薬(3)	5, 6

Ι

椤業で行っている工夫:本講義内容は機能形態学や薬の効き方等の関連科目と密接な関係があるので、それらの科目を有

機的に結びつけ、知識の定着と理解が深まるように丁夫している。要点を整理し、図解を取り入

れた補助プリントを配布し、学習しやすいように努めている。

モデル・コアカリ: C8 キュラムとの関連

生命体の成り立ち (1) ヒトの成り立ち 【消化器系】

(3) 生体の機能調節 【消化・吸収の調節機構】

C13 薬の効くプロセス (3)薬の効き方Ⅱ 【消化器系に作用する薬】

C14 薬物治療 (1) 体の変化を知る 【症候と臨床検査値】

(2)疾患と薬物治療 【消化器系疾患】

成 績 評 価 方 法: 1) 形成的評価 a) 知識:補助プリントに提示した演習問題を行う。

2) 総括的評価 a) 知識:出席と定期試験の結果より総合評価する。但し、受講態度によっては

受験停止の措置を講ずることがある。

書:薬学生のための新臨床医学(市田公美ら編 廣川書店) 教 科

参 老 書:疾病と病態生理 第2版(橋本、佐藤、豊島編 南江堂)

> 治療薬マニュアル (医学書院) 今日の治療薬(南江堂)

病気がみえる vol.1 消化器 (メディックメディア)

オフィスアワー:いつでも可。 ただし、要予約。

所属教室:長谷川病態生理学教室研究2号館6階604-2

疾病と薬物治療V

Diseases and Pharmacotherapy V

単位

1

第3学年 科目分類 必 修 前期・後期 後 期 平野 臨床薬理学教室(A·B、C·D、E·F、G·H) 教 授 俊彦

助 恩田 健二 臨床薬理学教室(A·B、C·D、E·F、G·H) 教

学習目標 (GIO)

年

薬物療法が治療上重要な疾患のうち、呼吸器系疾患、免疫・アレルギー疾患(関節リウマチを含 む)、移植医療、眼および耳鼻咽喉の疾患における身体の病的変化を病態生理学的に理解するため に、これらの疾患の概念、分類、症候、臨床検査値、および診断に関する基本的知識を修得する。 併せてこれらの疾患に対する薬物療法の概念を理解するために、代表的治療薬に関する一般的知 識を修得する。

▋講師紹介

平野 俊彦 東京薬科大学薬学部臨床薬理学教室教授、

1979年東京薬科大学卒、薬剤師、薬学博士

恩田 健二 東京薬科大学薬学部臨床薬理学教室助教、

1997年東京理科大学薬学部卒、薬剤師、博士(薬学)

▋行動目標 (SBOs)

1	呼吸器系の成り立ちとその異常に基づく疾患について説明できる。
2	呼吸機能検査法とその意義について説明できる。
3	閉塞性気道疾患(気管支喘息、慢性気管支炎、肺気腫)の病態生理と適切な治療薬について説明できる。
4	肺炎と肺結核の病態生理と適切な治療薬について説明できる。
5	免疫系の成り立ちとその異常に基づく疾患について説明できる。
6	代表的なアレルギー・免疫に関する疾患を挙げることができる。
7	自己免疫疾患 (全身性エリテマトーデス、関節リウマチなど) の病態生理と適切な治療薬について説明できる。
8	アナフィラキシーショックの病態生理と適切な治療薬について説明できる。
9	後天性免疫不全症の病態生理と適切な治療薬について説明できる。
10	臓器移植に関連した病態生理と適切な治療薬について説明できる。
11	眼に関する代表的な疾患を挙げることができる。
12	緑内障の病態生理と適切な治療薬について説明できる。
13	白内障の病態生理と適切な治療薬について説明できる。
14	耳の構造と機能、およびめまいについて概説できる。
15	末梢性めまいとメニエール病の病態生理および治療薬について概説できる。
16	かぜ症候群、副鼻腔炎、および中耳炎とその治療薬について説明できる。

	• • • • • • • •				
回数	担 当	内 容	対応 (SBOs)		
1, 2	平野俊彦	呼吸器系の成り立ちと呼吸機能検査および閉塞性肺疾患について	1, 2, 3		
3、4	//	慢性閉塞性肺疾患、気管支喘息の原因、症状、病態、および 治療薬	3		
5、6	//	肺炎、肺結核の原因、症状、病態、および治療薬	4		
7	恩田健二	免疫系の成り立ち、アレルギーの種類、および代表的な自己 免疫疾患の病態生理と治療薬	5、6		
8, 9	//	全身性エリテマトーデス、関節リウマチの病態生理と治療薬	7		
10	//	アナフィラキシーショック、後天性免疫不全症候群(AIDS) の病態生理と適切な治療薬	8, 9		
11	平野俊彦	臓器移植に関連した病態生理と適切な治療薬	10		
12	//	緑内障と白内障の病態生理および治療薬	11~13		
13	//	耳の構造と機能、およびめまいの病態生理	14、15		
14	//	末梢性めまいの病態生理とメニエール病の治療薬 かぜ症候群、副鼻腔炎、および中耳炎とその治療薬	15、16		

授業で行っている工夫:教科書や配布プリントの内容を基本とし、板書やスライドによってその十分な補足説明を行っている。

モデル・コアカリ: C-14 (1)、C-14 (3)、C-14 (4)

キュラムとの関連

▋授業内容

成績評価方法: 出席状況と定期試験により評価する。

教 科 書:わかりやすい薬学生のための「病態生理と薬物治療」(厚味厳一ら共著 ティ・エム・エス社)

参 考 書:臨床薬物治療学(アークメディア社)

わかりやすい疾患と処方薬の解説(アークメディア社)

病気がみえる (Medic Media社)

オフィスアワー: 平野俊彦 月〜金の在室中はいつでも可。 臨床薬理学教室 (医療薬学研究棟2階教授室)

恩田健二 月~金の在室中はいつでも可。 臨床薬理学教室(医療薬学研究棟1階研究室)

所 属 教 室:平野俊彦 臨床薬理学教室(医療薬学研究棟2階教授室)

恩田健二 臨床薬理学教室(医療薬学研究棟1階研究室)

特 記 事 項: 図表を多く使った教科書、プリントを講義に用います。担当者は薬剤師であり医師ではありませんが、臨床研修や臨床研究の経験を生かし、臨場感のある講義を意識しています。

教員からの一言:分かりやすい解説の工夫を心がけます。しかしそれでも分からない所は、放置せず質問にきてください。

薬の効き方Ⅲ Pharmacology III

学年 第3学年 科目分類 必修 前期・後期後期 単位 1

教 授 **田野中 浩一** (A·B、C·D、E·F、G·H)

学習目標 (GIO)

薬の効き方Ⅲでは、生理活性物質概論、薬の効き方ⅠおよびⅢの内容に加えて、循環器(利尿を含む)、血液系、呼吸器、悪性腫瘍に作用する薬物について薬理作用、作用機序、医療用途(適用症状)についての基礎的な知識の習得を目標に学習する。細胞内情報伝達系を含めた薬物の作用機序や適用を理解するだけでなく、薬物の主な(特徴ある)副作用に関する基礎的な知識も習得する。薬剤師としての職能に直結する重要な科目であり、機能形態学、生化学、微生物学など広範囲の知識およびそれらを応用して考える能力が要求される。

▋行動目標 (SBOs)

1	血管の構造・生理機能および利尿を含めた血圧調節について説明できる。
2	代表的な高血圧治療薬を挙げ、薬理作用およびその作用機序、主な副作用について説明できる。
3	代表的な利尿薬を挙げ、薬理作用およびその作用機序、主な副作用について説明できる。
4	心臓の構造・生理機能、細胞内情報伝達を含めた心臓の収縮・弛緩の機序および刺激伝導系を説明できる。
5	代表的な虚血性心疾患治療薬を挙げ、薬理作用およびその作用機序、主な副作用について説明できる。
6	強心薬を含めた代表的な心不全治療薬を挙げ、薬理作用およびその作用機序、主な副作用について説明できる。
7	強心配糖体を含めた代表的な抗不整脈薬を挙げ、薬理作用およびその作用機序、主な副作用について説明できる。
8	代表的な動脈硬化症治療薬を挙げ、薬理作用およびその作用機序、主な副作用について説明できる。
9	血小板の構造および血小板凝集の機序について説明できる。
10	代表的な末梢循環改善薬(抗血小板薬を含む)を挙げ、薬理作用およびその作用機序、主な副作用について 説明できる。
11	血液凝固および線溶作用について説明できる。
12	代表的な血液凝固阻害薬を挙げ、薬理作用およびその作用機序、主な副作用について説明できる。
13	代表的な血栓溶解薬を挙げ、薬理作用およびその作用機序、主な副作用について説明できる。
14	代表的な血液凝固促進薬(止血薬)を挙げ、薬理作用およびその作用機序、主な副作用について説明できる。
15	血球分化について説明できる。
16	赤血球・白血球減少症について説明できる。
17	代表的な貧血治療薬を挙げ、薬理作用およびその作用機序、主な副作用について説明できる。
18	代表的な白血球分化促進薬を挙げ、薬理作用およびその作用機序、主な副作用について説明できる。
19	呼吸器の構造、機能、反射を説明できる。
20	呼吸興奮薬、鎮咳薬、去痰薬の作用機序および適用を説明できる。
21	気管支喘息の発症機序、その治療薬の作用機序について説明できる。
22	細胞増殖の機序、悪性腫瘍の種類について説明できる。
23	アルキル化薬および核酸代謝拮抗薬について作用機序、適用、代表的な副作用について説明できる。
24	アルカロイド由来の抗悪性腫瘍薬の作用機序、適用、特徴ある副作用について説明できる。
25	抗生物質由来の抗悪性腫瘍薬の作用機序、適用、特徴ある副作用について説明できる。
26	分子標的薬の作用機序、適用、特徴ある副作用について説明できる。
27	ホルモン由来抗悪性腫瘍薬の作用機序、適用、特徴ある副作用について説明できる。

IX

授業内容

回数	担 当	内 容	対応 (SBOs)
1	田野中	高血圧症治療薬 1	1, 2
2	//	高血圧症治療薬2	2, 3
3	//	虚血性心疾患および心不全治療薬 1	4, 5
4	//	虚血性心疾患および心不全治療薬2	5, 6
5	//	抗不整脈薬	7
6	//	動脈硬化症治療薬	8
7	//	末梢循環改善薬	9, 10
8	//	血液に作用する薬物 1	11~14
9	//	血液に作用する薬物2	15~18
10	//	呼吸器系に用いられる薬物 1	19
11	//	呼吸器系に用いられる薬物2	20
12	//	呼吸器系に用いられる薬物3	21
13	//	抗悪性腫瘍薬 1	22、23
14	//	抗悪性腫瘍薬2	24、25
15	//	抗悪性腫瘍薬3	26、27

授業で行っている工夫: 講義資料として予めプリントを配布し、次回の講義で重要なポイントを予習できるようにする。 特に、機能形態学、生化学、有機合成化学など他の講義との関連を重視した薬物に関する総合的 な理解が出来るように進める予定である。講義、教科書およびプリントから、各自がノートを作 成し、独自のテキストとして実習などで活用できるようにする。

モデル・コアカリ: C13 薬の効くプロセス

キュラムとの関連 薬の効き方 [:循環器系に作用する薬、呼吸器系に作用する薬

薬の効き方Ⅱ:代謝系に作用する薬(脂質異常症治療薬)、腎に作用する薬、血液・造血系に作用 する薬

C14 薬物治療

疾病と薬物治療:心臓・血管系の疾患、血液・造血器の疾患、代謝性疾患(脂質異常症)、抗悪性腫瘍薬

成績評価方法:総括的評価;定期試験成績および出席点で総合的な評価を行う。なお、出席不良の学生に対しては、 定期試験での受験停止の措置を講ずる。

教 書:最新薬の効き方(愛智出版)

参考書: New薬理学(第4版)(南江堂)

薬理学実習の実際とデータの見方(南山堂)

医療薬学病態と薬物治療 [- Ⅲ (東京化学同人)

新しい機能形態学 ーヒトの成り立ちとその働きー(小林、馬場、平井編、廣川書店)

オフィスアワー: 田野中 17:30~19:00 分子細胞病態薬理学教室 薬理学実習期間および水曜日を除く

所 属 教 室:分子細胞病態薬理学教室 研究2号館504

特 記 事 項:毎回、出席を取り、出席回数が全講義回数の2/3に達しない者は原則として定期試験の受験資格 を与えない。

原則として遅刻を認めない。

15回分の講義時間を確保するために、補講を実施する。

教員からの一言: 非常に多くの薬物が登場し、いずれも臨床で用いられるものです。「生理活性物質概論」と「薬の効き方」は暗記科目ではありません。その薬物の臨床用途、作用機序、副作用などを総合的に考える(知識を使いこなす)科目です。情報量が非常に多いので、必ず復習してください。

疾病と薬物治療VI

Diseases and Pharmacotherapy VI

学 年	第3	学年	科目分類	必修	前期・後期	後	期	単位	1	
准教授	下枝	貞彦(A	· B、C · [D、E·F、G·I)					
准教授	杉浦	宗敏(A	\cdot B、C \cdot [D、E·F、G·I	H)					
准教授	山田	純司(A	\cdot B、C \cdot D	D、E·F、G·I	H)					

学習目標 (GIO)

疾病に伴う症状と臨床検査値の変化など的確な患者情報を取得し、患者個々に応じた薬の選択、用法・用量の設定および各々の医薬品の「使用上の注意」を考慮した適正な薬物治療に参画できるようになるために、薬物治療に関する基本的知識を修得する。疾病と薬物治療 I ~WIIのうち本講義では代表的な血液・造血器疾患、心臓・血管疾患に関して病態生理、臨床症状、検査・診断、治療および患者説明について学習する。さらに、治療に用いられる代表的な医薬品に関する基本的知識を修得する。

┃ 行動目標 (SBOs)

1	血液・造血器における代表的な疾患を挙げることができる。
2	白血病の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
3	貧血の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
4	播種性血管内凝固症候群(DIC)の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
5	血友病、悪性リンパ腫、紫斑病、白血球減少症、血栓・塞栓について概説できる。
6	心臓および血管系における代表的な疾患を挙げることができる。
7	心不全の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
8	虚血性心疾患の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
9	不整脈の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
10	高血圧の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
11	脳血管障害、末梢血管障害について概説できる。
12	閉塞性動脈硬化症、心原性ショックについて概説できる。

回数	担 当	内 容	対応 (SBOs)
1	下枝	血液・造血器疾患-1 総論	1
2	//	血液・造血器疾患ー2 造血器腫瘍	2
3	//	血液・造血器疾患ー3 造血器腫瘍	2, 5
4	杉浦	血液・造血器疾患-4 貧血	3
5	//	血液·造血器疾患-5 出血性疾患	4
6	//	血液·造血器疾患-6 出血性疾患、他	5
7	山田	心臓·血管疾患-1 総論	6
8	//	心臓·血管疾患-2 心不全	7、12
9	//	心臓・血管疾患-3 虚血性心疾患	8

	1	7
早	E	5
て半ら	エンン	F
=	_	
2	<u> </u>	
1	是	
(EX		

回数	担 当	内 容	対応 (SBOs)
10	//	心臓・血管疾患-4 虚血性心疾患	8
11	//	心臓・血管疾患-5 不整脈	9
12	//	心臓・血管疾患-6 血圧異常	10
13	//	心臓・血管疾患-7 血圧異常	10
14	//	心臓·血管疾患-8 脳血管障害·末梢血管障害	11, 12

授業で行っている工夫:最新の診療ガイドラインに基づいて教科書(プリント:A4版 150頁前後)を作成し、毎年、部 分改訂している。具体的な症例や処方例を出来るだけ多く紹介するようにしている。疾患ごとに 初めの講義で、関連する解剖生理学・生化学的知識を復習してから本論に移る。講義中は書画力 メラ等を利用して教科書への書き込みを促し、写真や医薬パンフレット、医療器具などの資料を 出来るだけ多く紹介する。教科書巻末には過去の試験問題を掲載し、その解説を通して要点の整 理と理解を助けるように努めている。

モデル・コアカリ: C13 薬の効くプロセス(2)循環器系に作用する薬、(3)血液・造血器系に作用する薬

キュラムとの関連 C14 薬物治療(2)心臓・血管系の疾患、血液・造血器の疾患

成績評価方法: 総括的評価 a) 知識: 定期試験の結果に基づいて評価する。但し、受講態度によっては受験資 格を失うことがある。

教 科 書:プリント:疾病と薬物治療VI。生協にて販売。

参 考 書:疾患と治療薬 改定第6版(南汀堂)

薬局増刊号 病気と薬のパーフェクトBOOK 2010 (南江堂)

治療薬マニュアル (医学書院) 今日の治療指針(医学書院) 今日の治療薬(南江堂)

オフィスアワー: 下枝 火曜日以外はいつでも可。但し、メールによる予約が必要。

ドラッグラショナル研究開発センター (DR棟) 4階 2041 号室

杉浦 いつでも可。但し、あらかじめ予約が必要。

ドラッグラショナル研究開発センター (DR棟) 4階 2041 号室

山田 いつでも可。但し、メールによる予約が必要。 医療薬学研究棟3階 2131号室

所 属 教 室:下枝 臨床薬剤学教室

> 杉浦 医薬品安全管理学教室 山田 総合医療薬学講座

テーラーメイド医療

Personalized Medicine

単 位

1

学 年 第3学年 科目分類 必 修 前期·後期 後 期

教授 古田 隆 臨床薬学教室 (A·B、E·F) 准教授 柴崎 浩美 臨床薬学教室 (C·D、G·H)

学習目標 (GIO)

安全で有効な薬物療法を実施するためには、科学的根拠(Evidence – Based Medicine)に基づき、個々の患者に応じた薬物の選択、投与量・投与法の決定が重要となる。本講義では、個々の患者の病状や背景を考慮した個別的かつ合理的な薬物療法を行うために、薬物の血中濃度を決定する薬物代謝酵素やトランスポーターの役割と遺伝子多型、疾患と臨床薬物動態学、薬物治療モニタリングの意義、薬物動態の予測法など、テーラーメイド薬物治療の基本となる項目について習得する。

▋行動目標 (SBOs)

1	テーラーメイド薬物治療の意義と薬剤師の役割について説明できる。
2	薬物代謝酵素やトランスポーターなどの遺伝子多型について説明できる。
3	薬物代謝酵素の遺伝子多型と血中薬物濃度、薬効・毒性発現の関連性について、例をあげて説明できる。
4	薬物代謝酵素の遺伝子多型を考慮した薬物投与設計について説明できる。
5	薬物治療個別化における薬物治療モニタリング(TDM)の重要性を説明できる。
6	ベイジアン法/ポピュレーションファーマコキネティクスの概念について説明できる。
7	投与設計に必要な薬物動態に関する基本的理論、薬物動態学的パラメーターの算出法を説明できる。
8	病態時(肝疾患、腎疾患、心疾患)における薬物動態の変動について説明できる。
9	病態時(肝疾患、腎疾患、心疾患)における薬物投与法について、例をあげて説明できる。
10	代表的な薬物の体内動態の変動要因について説明できる。
11	高齢者、小児における薬物投与に関する注意点について、例をあげて説明できる。

回数	担 当	内 容	対応 (SBOs)
1	古田、柴崎	遺伝子診断による薬物投与の個別化(1) 遺伝子多型と臨床薬物動態学	1, 2, 3
2-3	//	遺伝子診断による薬物投与の個別化(2) 薬物代謝酵素、トランスポーターの遺伝子多型	1, 2, 3
4	//	遺伝子診断による薬物投与の個別化(3) 遺伝子多型から薬物動態の予測	1、3、4
5-6	//	TDMによる薬物投与の個別化:TDMの意義とPopulation Pharmacokineticsの概念	5、6
7-8	//	疾患時の薬物投与の個別化(1)薬物動態学的パラメーターの 算出	7、8
9	//	疾患時の薬物投与の個別化 (2) 肝疾患	8、9
10	//	疾患時の薬物投与の個別化 (3) 腎疾患	8, 9
11	//	疾患時の薬物投与の個別化 (4) 心疾患	8, 9

選3年次

回数	担 当	内 容	対応 (SBOs)
12	//	小児・高齢者における薬物投与の個別化	11
13	//	個々の患者における薬物動態の予測	5, 6, 10

授業で行っている工夫: 教科書の例題・課題を用い、問題解決能力を養う。さらに、複数回のテストの実施あるいは宿題 を課して実力を養成する。

教科書の確認問題を利用して国家試験・CBT対策を行う。学会・学術論文および医療現場における最新情報を紹介して、実務実習に対応できるようにする。

モデル・コアカリ: C15 薬物治療に役立つ情報(3) テーラーメイド薬物治療を目指してキュラムとの関連

成 **績 評 価 方 法**: 1) 形成的評価 a:知識:宿題、あるいは講義時間内のテストの結果を評価する。

2)総括的評価 a:知識:出席、宿題、あるいは講義時間内のテスト、定期試験の結果を総合的に評価し、成績評価60%以上を合格とする。出席不良者は受験停止とすることがある。

教 科 書: テーラーメイド医療 -薬物治療の個別化-(古田、柴崎、横川 著、京都廣川書店)

参 者 書: 臨床薬物動態学(加藤隆一著 南汀堂)、今日の治療薬(南汀堂)

オフィスアワー: 古田後期 毎週火曜日 14:00~17:00 臨床薬学教室 医療薬学研究棟2階 柴崎後期 毎週月曜日 14:00~17:00 臨床薬学教室 医療薬学研究棟1階

所属教室:古田隆臨床薬学教室医療薬学研究棟2120号室 柴崎浩美臨床薬学教室医療薬学研究棟2110号室

教員からの一言: 講義内容の復習・理解のために、教科書に掲載した各項のまとめ、確認問題、例題、課題を利用 して下さい。

疾病と薬物治療VII

Diseases and Pharmacotherapy VII

学 年 第3学年 科目分類 必 修 前期·後期 後 期 単 位 1 (無k,業熟額 (壓輔 網)と映て判域設する)

教授 **山田 安彦** (A·B、C·D、E·F、G·H) 准教授 **野口 雅久** (A·B、C·D、E·F、G·H)

学習目標 (GIO)

生体内で異常に増殖あるいは複製することにより人体に疾患を生じる細菌、ウイルスなど、および悪性新生物に対する薬物の作用機序を理解し、薬物治療へ応用できるようになるために、抗菌薬、抗悪性腫瘍薬などに関する基本的知識を修得する。

┃ 行動目標 (SBOs)

	11% (0003)
1	主な感染症を列挙し、その病態と原因を説明できる。
2	抗菌薬を作用点に基づいて分類できる。
3	代表的な β – ラクタム系抗菌薬を抗菌スペクトルに基づいて分類し、有効な感染症を列挙できる。
4	テトラサイクリン系抗菌薬の抗菌スペクトルと、有効な感染症を列挙できる。
5	マクロライド系抗菌薬の抗菌スペクトルと、有効な感染症を列挙できる。
6	アミノ配糖体系抗菌薬を抗菌スペクトルに基づいて分類し、有効な感染症を列挙できる。
7	ピリドンカルボン酸系抗菌薬の抗菌スペクトルと、有効な感染症を列挙できる。
8	サルファ薬(ST合剤を含む)の有効な感染症を列挙できる。
9	代表的な抗結核薬を列挙し、作用機序を説明できる。
10	細菌感染症に関係する代表的な生物学的製剤を挙げ、その作用機序を説明できる。
11	代表的な抗菌薬の使用上の注意について説明できる。
12	特徴的な組織移行性を示す抗菌薬を列挙できる。
13	代表的な抗原虫・寄生虫薬を列挙し、作用機序および臨床応用を説明できる。
14	代表的な抗真菌薬を列挙し、作用機序および臨床応用を説明できる。
15	代表的な抗ウイルス薬を列挙し、作用機序および臨床応用を説明できる。
16	抗ウイルス薬の併用療法において考慮すべき点を挙げ、説明できる。
17	主要な化学療法薬の耐性獲得機構を説明できる。
18	主要な化学療法薬の主な副作用を列挙し、その症状を説明できる。
19	院内感染について、発生要因、感染経路、原因微生物、およびその防止対策を概説できる。
20	悪性腫瘍の病態生理、症状、治療について概説できる。
21	悪性腫瘍の治療における薬物治療の位置づけについて概説できる。
22	代表的な抗悪性腫瘍薬を列挙できる。
23	代表的なアルキル化薬を列挙し、作用機序を説明できる。
24	代表的な代謝拮抗薬を列挙し、作用機序を説明できる。
25	代表的な抗腫瘍抗生物質を列挙し、作用機序を説明できる。
26	抗悪性腫瘍薬として用いられる代表的な植物アルカロイドを列挙し、作用機序を説明できる。
27	抗悪性腫瘍薬として用いられる代表的なホルモン関連薬を列挙し、作用機序を説明できる。
28	代表的な白金錯体を挙げ、作用機序を説明できる。
29	主要な抗悪性腫瘍薬の主な副作用を列挙し、その症状を説明できる。
30	副作用軽減のための対処法を説明できる。
31	主要な抗悪性腫瘍薬に対する耐性獲得機構を説明できる。
32	化学療法薬が有効な悪性腫瘍を、治療例を挙げて説明できる。

回数	担 当	内 容	対応 (SBOs)
1	山田	悪性腫瘍の病態と治療	20, 21
2	//	抗悪性腫瘍薬(1)	22、23、24、 25、26、27、28

IX

回数	担 当	内 容	対応 (SBOs)
3	//	抗悪性腫瘍薬(2)	22、23、24、 25、26、27、28
4	//	抗悪性腫瘍薬の副作用と耐性 (1)	29、30、31
5	//	抗悪性腫瘍薬の副作用と耐性(2)	29、30、31
6	//	悪性腫瘍の治療の実際(1)	32
7	//	悪性腫瘍の治療の実際 (2)	32
8	野口	抗微生物薬 概論	2、3、4、5、 6、7、8、9
9	//	細菌感染症と治療薬	1, 2, 3, 4, 5, 6, 7, 8, 9, 11
10	//	ウイルス感染症、真菌感染症、抗寄生虫感染症と治療薬および生物製剤	1、2、10、13、 14、15、16
11	//	感染症と治療(1)	1, 11, 12
12	//	感染症と治療 (2)	1, 11, 12
13	//	化学療法薬の適正使用 (PK/PD、副作用と薬剤耐性)	11、12、17、18
14	//	院内感染と感染制御	19

授業で行っている工夫: 山田: 基本的に修得すべき事柄はテキストにまとめており、予習、復習の際に役立てられるようにしている。ポイントとなる所において、写真や図表などを提示し、印象づけるように工

夫している。

野口:最新の感染症の事例や開発中の抗菌薬、さらに図表や写真等を講義に加え、興味ある講義 を心がけている。適宜、学生に質問し、重要なことを再認識させている。

モデル・コアカリ: C10 生体防御 (3) 感染症にかかる

キュラムとの関連 C14 薬物治療 (5) 病原微生物・悪性新生物と戦う

成績評価方法: 1) 形成的評価 a) 知識 例題等を提示して繰り返し行う。

2) 総括的評価 a) 知識 定期試験、レポート等の結果に出席などを加味して総合的に評価する。 出席不良者(全講義の1/3以上の欠席者)に対しては受験停止の措置を講ずることがあるので注 意すること。欠席者において、病気等の適切な理由がある場合は欠席届等を提出すること。

参考書:がん診療レジデントマニュアル(国立がんセンター内科レジデント編 医学書院)がんのベーシックサイエンス(谷口直之他 監訳 メディカル・サイエンス・インターナショナル)抗菌薬のガイドライン (日本化学療法学会 協和企画)

化学療法学(上野芳夫・大村 智 監修 南江堂)

レジデントのための感染症マニュアル 第2版 (青木眞 医学書院)

感染症診療スタンダードマニュアル (青木眞・喜舎場朝和 監修 羊土社)

消毒薬テキスト 吉田製薬 (http://www.yoshida – pharm.com/text/index.html)

薬剤師のための感染制御マニュアル(日本病院薬剤師会 監修 薬事日報)

オフィスアワー: 山田 いつでも可。 臨床薬効解析学教室 研究2号館204号室 野口 いつでも可。 病原微生物学教室 研究2号館516号室

所属教室:山田臨床薬効解析学教室研究2号館204号室野口病原微生物学教室研究2号館516号室

特 記 事 項:山田先生の補助資料の一部は、講義終了後WebClassよりダウンロードできます。 野口先生の講義資料はWebClassよりダウンロードしてください。

教員からの一言: 山田: 新しい抗悪性腫瘍薬が日々開発されていますので、最新情報に基づいた講義を行います。 野口: 化学療法は範囲が広いため、配付資料に講義内容をまとめた図表や練習問題がありますので、 活用してください。

疾病と薬物治療VII(医療情報演習)

Diseases and Pharmacotherapy VII (Practice of Pharmaceutical Information)

学 年	第3学年	科目分類	必修		前期・後期	後期		単 位	1 (疾病と薬物治療VIIと)
教 授	山田 安彦	孝	教 授	土橋	朗	准教授	高柳	理早	
准教授	小杉 義幸	且	助 教	横山	晴子	助手	倉田	香織	

】学習目標 (GIO)

薬物治療に必要な情報を医療チームおよび患者に提供するために、医薬品情報ならびに患者から得られる情報の収集、評価、加工などに関する基本的技能と態度を修得する。医薬品の適正使用に必要な医薬品情報を理解し、正しく取り扱うことができるようになるために、医薬品情報の収集、評価、加工、提供、管理に関する基本的技能、態度を修得するとともに、個々の患者への適正な薬物治療を実践できるようになるために、患者からの情報の収集、評価に必要な基本的技能、態度を修得する。

▋行動目標 (SBOs)

1	医療用医薬品添付文書と医薬品インタビューフォームの使い分けができる。
2	目的(効能効果、副作用、相互作用、薬剤鑑別、妊婦への投与、中毒など)に合った適切な情報源を選択し、 必要な情報を検索、収集できる。
3	医薬品情報の加工、提供、管理の際に、知的所有権、守秘義務に配慮する。
4	医学・薬学文献データベース検索におけるキーワード、シソーラスの重要性を理解し、適切に検索できる。
5	インターネットなどを利用して代表的な医薬品情報を収集できる。
6	医薬品に関する論文を評価、要約し、臨床上の問題を解決するために必要な情報を提示できる。
7	薬歴、診療録、看護記録などから患者基本情報を収集できる。
8	患者、介護者との適切なインタビューから患者基本情報を収集できる。
9	得られた患者情報から医薬品の効果および副作用などを評価し、対処法を提案する。
10	SOAPなどの形式で患者記録を作成できる。
11	チーム医療において患者情報を共有することの重要性を感じとる。
12	患者情報の取扱いにおいて守秘義務を遵守し、管理の重要性を説明できる。

回数	担 当	内 容	対応 (SBOs)
1	山田、高柳、横山	患者基本情報の収集、取扱い、管理 (1)	7、8、9、11、12
2	//	患者基本情報の収集、取扱い、管理 (2)	7、8、9、11、12
3	//	SOAPによる患者記録作成	9、10、11
4	土橋、小杉、倉田	医学・薬学文献データベースを用いた検索	2、4、5
5	//	医薬品に関する論文の評価	1, 2, 4, 6
6	//	目的に応じた医薬品情報の収集、取扱い、管理	1, 2, 3, 5

必全

選択科

授業で行っている工夫: オリジナルのワークシートを用いた個人での作業を行うとともに、グループワークによるディス

カッションとプロダクト作成も行う。

SGDによる発表・討論を実施しながら、演習の各段階で修得状況を確認し、教員からのフィードバックを行っている。

モデル・コアカリ: C15 薬物治療に役立つ情報

キュラムとの関連 (1) 医薬品情報

(2) 患者情報

成 績 評 価 方 法: 1) 形成的評価 a) 知識:演習問題を提示して繰り返し行う。

b) 技能: 演習時間内に、手法等についてこまめにフィードバックする。

c) 態度:演習を通じて観察を行い、フィードバックする。

2) 総括的評価 a) 知識:出席、提出物等を総合評価する。

b) 技能:形成的評価を通して総合評価する。

c) 態度:繰り返しの形成的評価を通して総合評価する。

教 **科 書**:標準医療薬学 医薬情報評価学(山田安彦 編集、土橋朗 編集協力、医学書院) その他は別途指示する。

参考書:治療薬マニュアル(医学書院) 今日の治療薬(南江堂)

プロジル原来(円)

オフィスアワー:原則いつでも可。

所属教室:山田·高柳·横山臨床薬効解析学教室研究2号館2階204号室

土橋・倉田 医薬品情報解析学教室 研究2号館2階206号室

小杉 リサーチセンター DRC棟4階

一般用医薬品学 Nonprescription Drugs

学 年 第3学年 科目分類 必 修 前期·後期 後 期 単 位 1

教 授 **渡辺 謹三** (A·B、C·D、E·F、G·H)

学習目標 (GIO)

薬局・ドラッグストアのカウンターで、薬剤師として利用者からの相談に応じ適切なセルフメディケーション支援を行うために、一般用医薬品とセルフメディケーション支援についての基礎知識を習得する。

▋行動目標 (SBOs)

1	薬剤師が行うセルフメディケーション支援が概説できる。
2	一般用医薬品の特徴、分類、関連法制度が説明できる。
3	一般用医薬品販売時の顧客からの情報収集、情報の分析・評価の方法が説明できる。
4	一般用医薬品の選択と情報提供、販売後のモニタリングの方法が説明できる。
5	おもな一般用医薬品を列挙し、適応症、医薬品選択と有害事象回避のポイントが説明できる。
6	漢方薬、生活改善薬、サプリメント、保健機能食品について概説できる。
7	薬局製剤の一般用医薬品としての特徴、薬局での製造および供給について概説できる。

回数	担 当	内 容	対応 (SBOs)
1	渡辺	一般用医薬品概説	1、2、3、4
2	//	一般用医薬品販売制度の基礎知識	1, 2
3	//	一般用医薬品販売の流れとポイント	3、4
4	//	一般用医薬品の選択と情報提供に必要な知識(1)	3、4、7
5	//	一般用医薬品の選択と情報提供に必要な知識 (2)	3、4、7
6	//	かぜ症候群関連の薬(かぜ薬、解熱鎮痛薬、鎮咳去痰薬、鼻 炎用薬、うがい薬・のどスプレー)(1)	5, 6
7	//	かぜ症候群関連の薬(かぜ薬、解熱鎮痛薬、鎮咳去痰薬、鼻 炎用薬、うがい薬・のどスプレー)(2)	5, 6
8	//	胃腸薬(制酸薬、消化薬、健胃薬、鎮痛鎮痙薬、H2 ブロッカー、 総合胃腸薬)	5, 6
9	//	胃腸薬に関連する薬(整腸薬、止瀉薬、瀉下薬、痔疾用薬)	5, 6
10	//	外用薬(化膿性皮膚疾患用薬、外用湿疹・皮膚炎用薬、水虫薬・たむし薬)(1)	5, 6
11	//	外用薬(化膿性皮膚疾患用薬、外用湿疹・皮膚炎用薬、水虫薬・たむし薬)(2)	5, 6
12	//	外用薬(点眼薬、口内炎用薬)	5, 6
13	//	その他の医薬品(禁煙補助薬、一般用検査薬)	5, 6
14	//	滋養強壮保健薬 (ビタミン主薬製剤、女性用保健薬)、サプリメント、保健機能食品、健康食品	5、6

1

XI

授業で行っている工夫:薬局のカウンターで実際に遭遇した事例を数多く紹介する、一般用医薬品の現物や薬剤師が相談 応需の際に使用する、文書やツールを講義中に回覧するなどにより、講義内容をより実務に近い

ものとしています。

モデル・コアカリ:1)薬学教育モデル・コアカリキュラム

キュラムとの関連

- ·C18 薬学と社会 (3) コミュニティーファーマシー
- 2) 病院·薬局実務実習
 - · B. 薬局に固有な薬剤師業務
 - ・薬局アイテムの流れ(P101)
 - ·薬局製剤 (P102、P103)
 - · 患者 · 顧客との接遇 (P401、P402、P403)
 - ·一般用医薬品·医療機器·健康食品(P404、P405)
 - ・カウンター実習(P406、P407)
 - · 地域対応実習(P515)
 - · 総合実習 (P601、P602)

成 績 評 価 方 法: 1) 形成的評価 a) 知識:課題レポートなどにより行う。

b) 態度:受講態度(出席状況など)により評価する。

2) 総括的評価 a) 知識: 定期試験により行う。

b)態度:受講態度(出席状況など)により評価する。

教 科 書:よくわかるOTC薬の服薬指導(松本、渡辺、三溝 編著、秀和システム)

参考書: わかりやすいセルフメディケーションとOTC 医薬品の使い方(中島恵美監修、ネオメディカル) OTC メディケーション虎の巻(泉澤 恵執筆・監修、日経ドラッグインフォメーション編、日経 BP社)

日本医薬品集一般薬2011 - 12 (DRUGS IN JAPAN 監修、じほう)

一般用医薬品学概説 第2版(齋藤、福室、武政著、じほう)

症状別チェック式 OTC薬の選び方・使い方(武政、安部著、じほう)

薬学生・薬剤師のための知っておきたい一般用医薬品(日本薬学会編、東京化学同人)

これからの大衆薬(薬事日報新書06、薬事日報社)

薬局製剤業務指針 第4版(日本薬剤師会編、薬事日報社)

http://www.jsmi.jp/(日本OTC医薬品協会HP)

http://www.pmda.go.jp / (医薬品医療機器総合機構 HP、ここから一般用医薬品・医療用医薬品の添付文書、重篤副作用や副作用救済制度に関する情報が得られる)

このほかの参考書も随時講義中に紹介する

オフィスアワー: 渡辺 いつでも可、ただしメールまたは電話により予約すること。 ドラッグラショナル (DR) 研究開発センター 3階、一般用医薬品学教室

所 属 教 室: 渡辺 一般用医薬品学教室 ドラッグラショナル (DR) 研究開発センター 3階 連絡先: 042-676-5122 (外線)、2034 (内線)、kinzo@toyaku.ac.jp (e - mail)

教員からの一言:薬剤師実務の現場では一般用医薬品やその周辺領域の各種製品に関する相談、セルフメディケーション支援は地域薬局のみならず主に処方調剤を扱う薬局でも求められます。本講義でこの分野の中核となる知識を理解、習得されることを望んでいます。

集 中 講 義:本講義では、本年度外来講師などによる集中講義は行わない。

-189-

薬学と社会 Social Pharmaceutical Science

 学年
 第3学年
 科目分類
 必修
 前期・後期
 前期
 単位
 1

准教授 **宮本 法子**(A·B、C·D、E·F、G·H) 非常勤講師 **五十嵐 中**(A·B、C·D、E·F、G·H)

学習目標 (GIO)

薬は単なる物質ではなく社会性をもつ、人の尊厳に深く関わるものである。医療や薬を取り巻く倫理や法律、医療制度、薬の流通や管理に対する現状分析、薬剤経済、地域薬局のあり方を学び、これらの社会環境とその変化を理解する能力をつける。

▋講師紹介

五十嵐 中 東京大学大学院薬学系研究科医薬政策学講座 特任助教

▍行動目標 (SBOs)

1	社会における薬剤師の法的存在意義を認識する。
2	薬剤師に関連する法律、制度の相互関係を理解する。
3	医療の担い手の倫理、薬の倫理を理解できる。
4	医薬品の開発から販売までの流れを理解できる。
5	日本の薬害の歴史と現状について概説できる。
6	医薬品等の安全対策について説明できる。
7	医薬分業の歴史としくみ、意義を説明できる。
8	医薬分業の現状を概説し、展望する。
9	地域医療を担う薬局の役割を考える。
10	日本の社会保障制度のしくみを説明できる。
11	社会保障制度における医療保障のしくみと現状を説明できる。
12	公的医療保険制度のしくみと問題点を説明できる。
13	高齢者及び障がい者に対する社会保障制度のしくみと現状を説明できる。
14	薬剤師に求められる社会的役割について考えを述べることができる。

回数	担 当	内 容	対応 (SBOs)
1	宮本	薬学の社会性:薬学の歴史と社会薬学の意義、薬剤師の法的、 社会的環境と倫理	1
2	//	薬剤師を取り巻く環境の変化、海外の薬局及び薬剤師	1, 2, 9
3	//	医薬分業制度:医薬分業の歴史と現状、今後の課題	7、8
4	//	医薬品の開発と承認及び医薬品の流通と市販後調査	4
5	//	医薬品の適正使用(1):日本の薬害の歴史と現状	4、5
6	//	医薬品の適正使用(2):医薬品等の安全対策における諸制度	5、6
7	//	地域保健医療における薬局の役割	8, 9, 14
8	五十嵐	社会保障制度及び医療保障制度のしくみ	9、10、11

XI 実習科目

回数	担 当	内 容	対応 (SBOs)
9	五十嵐	医療経済の基礎:国民医療費、薬価基準制度	8, 9
10	//	診療報酬制度:医療にかかる費用	10、11
11	//	少子・高齢社会	10, 11, 12
12	宮本	地域保健医療における薬剤師の役割:在宅医療、災害医療	10, 11
13	//	国民の命と健康を守る医療の担い手として、薬剤師にはいか なる責任が課せられるのか?	1、12、14

授業で行っている工夫:もし、自分が薬剤師の立場であったなら、薬害を防止するために何ができるのか、できたのかを

真剣に考えられるように、事例を紹介しながら授業を進める。 また、自分の理解したものをい

かに短時間で、的確に表現できるか、メモを取るトレーニングを取り入れる。

モデル・コアカリ: C18 薬と社会(放射性医薬品を除く)、C17 医薬品の開発と生産に対応 **キュラムとの**関連

成 績 評 価 方 法:2) 総括的評価 a) 知識:受講態度 (課題提出、出席など) および定期試験の結果

参考 書:薬剤師とくすりと倫理(じほう)、健康とは何か(共立出版)

オフィスアワー: 宮本 法子 いつでも可 社会薬学研究室

書: これからの社会薬学2版(南江堂)

所属教室:宮本法子社会薬学研究室

教

 $\overline{\mathbb{W}}$

薬事関連法規と制度 I

Pharmaceutical Affairs Law I

単 位

1

期

学年 第3学年 科目分類 必修

准 教 授 **宮本 法子** (A·B、C·D) 非常勤講師 **秋本 義雄** (E·F、G·H)

学習目標 (GIO)

患者の生命に関わる医療者として、薬剤師に必要とされる法的知識と倫理、法的責任のあり方を 理解するため、薬事関係法規および関連する制度の基本知識を修得する。

前期・後期 後

講師紹介

秋本 義雄 東邦大学薬学部 薬事法学研究室 准教授

▋行動目標 (SBOs)

1	薬剤師に関連する関係法令を挙げ、その関わりを説明できる。
2	薬剤師の任務と法的責任を説明できる。
3	他の医療従事者の法的責任を知り、薬剤師との関わりを説明できる。
4	薬事法に定義される医薬品等を挙げ、説明できる。
5	医薬品の製造販売業及び販売業の規制について説明できる。
6	医薬品の医薬品等の安全対策について説明できる。
7	医薬品の副作用被害救済制度等について、その成り立ちと現状を説明できる。
8	麻薬、覚せい剤等の管理薬を挙げ、それぞれの規制法について概説し、代表的な医薬品を列挙できる。
9	毒物及び劇物取締法の成り立ちとその規制について概説できる。
10	薬剤師に求められる役割について考察できる。

回数	担 当	内 容	対応 (SBOs)
1	秋本、宮本	薬剤師と憲法及び法律の関係、法・倫理・責任	1
2	//	薬剤師法、薬剤師の資格と任務及び業務(1)	2、3
3	//	薬剤師法、薬剤師の資格と任務及び業務(2)	2, 3
4	//	薬事法、医薬品等の定義	4
5	//	医薬品・医療機器・医薬部外品、化粧品の製造販売規制	5
6	//	医薬品等の品質確保・製造管理システム	5, 6
7	//	医薬品等の安全対策	5, 6
8	//	医薬品等の安全対策	5, 6
9	//	麻薬及び向精神薬取締法、あへん法、大麻取締法、覚せい剤 取締法(1)	8
10	//	麻薬及び向精神薬取締法、あへん法、大麻取締法、覚せい剤 取締法(2)	8
11	//	麻薬及び向精神薬取締法、あへん法、大麻取締法、覚せい剤 取締法(3) 薬物乱用防止	8

科科目

選択科次

回数	担 当	内 容	対応(SBOs)
12	//	毒物及び劇物取締法	9
13	//	医薬品副作用被害救済制度、医薬品医療機器総合機構法、製造物責任法	10

授業で行っている工夫: 2名の講義担当者の授業内容が異ならないように、共通のPPTを利用している。各単元終了毎に、確認の小テストを実施し、講義の理解度をチェックしている。PPT教材と確認試験のための解説書を作成している。

モデル・コアカリ: C18 薬学と社会: (1) 薬剤師を取り巻く法律と制度 【医療の担い手としての使命】、【法律とキュラムとの関連 制度】に対応

成 績 評 価 方 法: 2) 総括的評価 a) 知識: 受講態度(出席等) および確認試験、定期試験の結果を加味し総合的 に評価する。

教 書:薬事関連法規改訂3版(南江堂)

参考書:薬事衛生六法(財団法人日本公定書協会編薬事日報社)

薬事関係法規・制度マニュアル(南山堂)

オフィスアワー: 宮本法子 いつでも可 社会薬学研究室

所 属 教 室: 宮本法子 社会薬学研究室

教員からの一言:薬学生は、なぜこれだけのおびただしい数の法律を勉強しなければならないのでしょうか。その 疑問を一緒に考えていきましょう。法律を勉強するにつれ、薬剤師の責任がずっしりと重いこと

を理解できるようになってきます。

 \mathbb{V}

4年次 必修科目

L子个	升六进州日」	
薬	事関連法規と制度 Ⅱ	196
薬	局方総論	198
健	康と環境 [200
健	康と環境 Ⅱ	202
薬	の効き方 Ⅳ (薬物治療演習) …	204
疾	病と薬物治療Ⅷ	206
[科]	川特論・演習]	
医療	寮薬学特論	
i	臨床で活躍する薬剤師を目指して ・・	208
ii	医薬品開発と臨床試験	209
iii	中医方剤学	210
医扼	寮薬学演習 I	
i	臨床で活躍する薬剤師を目指して ([)・・	211
ii	臨床で活躍する薬剤師を目指して(Ⅱ)・・	213
iii	医薬品開発と臨床試験	214
医療	寮薬物薬学特論	
i	創薬概論	216
ii	データ解析集中講座	218
iii	中医方剤学	220
医療	寮薬物薬学演習 I	
i	医薬品創製と基礎 (物理・化学系)・・・・・	221
ii	医薬品創製と基礎 (生物系・医療薬学系)・・・・	223
iii	創薬演習	225
医療	寮衛生薬学特論	
i	高齢者医療	227
ii	先端香粧品科学	228
iii	医療衛生薬学小論文	229
医療	寮衛生薬学演習 I	
i	セルフメディケーション:薬剤師の関わり・・・・	230
ii	臨床応用薬学への課題研究チュートリアル・・・・	232
iii	薬剤師の職能と自己将来展望 …	234
科別	削英語特論 · · · · · · · · · · · · · · · · · · ·	236
■総合	演習	
	化学演習	237
総合	生物演習	238
	創薬演習	239
	物理演習	240
		240
	薬・疾病演習	241
総合	法規演習	241

■科別専門科目]

薬事関連法規と制度Ⅱ

Pharmaceutical Affairs Law II

学 年	第45	学年	科目分類	必修	前期・領	後期 前 其	期	単 位	1
教 授	内野	克喜	医薬品安全管		空 医療薬	学科、医療	寮薬物薬学科	科、医療衛	5生薬学科
教 授	渡辺	謹三	一般用医薬品	品学教室	医療薬学科、	医療薬物	7薬学科、2	医療衛生薬	葵 学科
准教授	宮本	法子	社会薬学研究	究室 医療	寮薬学科、医療	寮薬物薬学	科、医療	新生薬学科	4
准教授	杉浦	宗敏	医薬品安全管		空 医療薬	学科、医療	聚物薬学科	科、医療衛	5生薬学科

学習目標 (GIO)

薬学を学ぶ者は、薬の倫理、薬剤師法や薬事法等の法律、さらにこれらを基盤として形成される 法制度を理解し、医療人としての責任を自覚しなければならない。わが国の医療は、社会保険方 式を取ることから、医療における薬剤経済の考え方を理解し、薬剤師として臨床で必要とされる 知識と役割を学ぶ。

講師紹介

五十嵐 中 東京大学大学院薬学系医療政策学講座 特任助教 湯浅 和恵 SJS患者会代表

▋行動目標 (SBOs)

1	薬剤師の倫理を説明できる。
2	医療制度、医薬分業制度における関係法令を挙げ概説できる。
3	社会保障制度における医療保険制度のしくみと現状について説明できる。
4	社会保障制度における福祉制度を概説できる。
5	医療提供体制、健康保険法等を説明できる。
6	公費負担医療保険制度を説明できる。
7	高齢者医療制度のしくみと現状について説明できる。
8	介護保険制度のしくみと現状について説明できる。
9	診療報酬制度について概説できる。
10	保険医療の実施・保険給付について概説できる。
11	国民医療費等を説明できる(薬剤経済)。
12	セーフテイマネージャーとしての薬剤師の役割を具体的に説明できる。

回数	担 当	内 容	対応 (SBOs)
1	宮本 法子	医療の担い手としての薬剤師の倫理	1
2	//	医療制度、医薬分業制度、医療供給体制と医療保障体制	2
3	//	医事関係法規(医療法、医師法、歯科医師法、保健師助産師 看護師法)	1, 2
4	五十嵐 中	高齢者医療のしくみと現状について説明できる。	3、7
5	//	介護保険制度のしくみと現状について説明できる。	3′8
6	//	国民医療費等を説明できる(1)	11
7	//	薬物治療の経済評価手法を概説できる。	11
8	内野 克喜	薬剤師業務における薬事関連法規(1)	9

回数	担 当	内 容	対応 (SBOs)
9	杉浦 宗敏	薬剤師業務における薬事関連法規(2)	9
10	渡辺 謹三	保険医療の実施・保険給付について概説できる。(1)	10
11	//	保険医療の実施・保険給付について概説できる。(2)	10
12	宮本法子	患者中心の医療を実現するために医療の担い手として薬剤師 に求められること	3、4、5、12
13	宮本 法子	最近の法律等に見るチーム医療と薬剤師の役割	3, 4, 5, 12
14	湯浅 和恵	セーフテイマネージャーとしての薬剤師の役割を認識する。	1, 2, 12

モデル・コアカリ: C18 薬学と社会(1) 薬剤師を取り巻く法律と制度に対応

キュラムとの関連

成績評価方法: 2)総括的評価 a)知識:受講態度(出席等)および定期試験の結果を加味し総合的に評価する。

教 **科 書**:薬事関連法規改訂3版(南江堂) 担当教員のオリジナル資料など

参考書:第12改訂 調剤指針 増補版(薬事日報社) オフィスアワー:宮本 法子 いつでも可 社会薬学研究室

所属教室:宮本法子社会薬学研究室

教員からの一言:日本の医療制度改革が進む中、どのような法制度が国民にとって望ましいのでしょうか。果たして薬剤師の職能が変わっていくのでしょうか。これまで勉強してきた薬剤師法等の法律を根拠に、それぞれの専門分野の講師5名と一緒に考えていきましょう。

薬局方総論 Pharmacopoeia

学年 第4学年 科目分類 必修 前期·後期前期 単位 1

教 授 **加藤 哲太** 医療薬学科、医療薬物薬学科、医療衛生薬学科 非常勤講師 **矢島 毅彦** 医療薬学科、医療薬物薬学科、医療衛生薬学科

学習目標 (GIO)

薬局方は、薬事法に基づいて国家が制定した医薬品の規格書であり、医薬品の有効性と安全性を保証する品質の基準が示されている。本講義において、日本薬局方を正しく活用しうる能力を習得するとともに、医薬品の試験法に対する適正な理解と認識を深める。さらに医薬品各条に関して十分な知識を得る。

講師紹介 矢島 毅彦 東邦大学名誉教授 Health Vigilance 研究会 理事長

┃ 行動目標 (SBOs)

1	日本薬局方の意義と内容について概説できる。
2	一般試験法に記載された主な試験法の原理と利用法について概説できる。
3	日本薬局方の製剤に関する試験法を列挙できる。
4	医薬品の性状と示性値について概説できる。
5	医薬品の主要な確認試験について概説できる。
6	医薬品の主要な純度試験について概説できる。
7	主要医薬品の定量法について概説できる。

回数	担当	内 容	対応 (SBOs)
1	 加藤	総論、第十五改正日本薬局方について	1
2	//	通則、製剤総則	1、2、3
3	//	一般試験法(薬効に関する試験法、生物学的試験法)	1, 2
4	矢島	一般試験法(化学的試験法)	1, 2
5~6	//	一般試験法(機器を用いる試験法)	1, 2
7	//	一般試験法(物理的特性に関する試験法)	1, 2
8	//	医薬品各条(性状と示性値、確認試験:陽、陰イオンの確認)	1, 4, 5
9	//	医薬品各条(確認試験:におい、発生するガスによる確認)	1, 5
10	//	医薬品各条(確認試験:官能基及び骨格の反応による確認)	1, 5
11	//	医薬品各条(確認試験:誘導体の生成による確認)	1, 5
12	//	医薬品各条(純度試験:無機性及び有機性混在物の検出)	1, 6
13~15	//	定量法(容量分析)	1、7

IX

授業で行っている工夫: できるだけわかりやすく、丁寧に講義を行ってる。又、適宜プリントやAV機器を使用している。

モデル・コアカリ: Bイントロダクションにおいては【日本薬局方】の項目、C2化学物質の分析においては、【定性キュラムとの関連 試験】、【定量の基礎】、C7自然が生み出す薬物では【生薬の同定と品質評価】、更には、C16製

剤化のサイエンスの内、【製剤試験法】に記載されている行動目標を達成することを目指している。

成績評価方法:1) 形成的評価 a) 知識:小テストを繰り返し行い、自己評価させる。

c) 態度: 出席状況や受講態度についてフィードバックする。

2) 総括的評価 a) 知識: 定期試験を行い評価する。

c) 態度:出席点、受講態度などを総合的に評価する。

教 科 書:日本薬局方要説(菊川、長坂、伊奈、加藤編 廣川書店)

考 書:第十五改正日本薬局方(厚生労働省) 第十五改正日本薬局方解説書(廣川書店)

第十六改正日本薬局方(厚生労働省) 第十六改正日本薬局方解説書(廣川書店)

オフィスアワー:加藤 薬学教育推進センター 教育棟1階1105号 要予約

所属教室:加藤薬学教育推進センター教育棟1階1105号

特 記 事 項: 今年日本薬局方の改訂があります。改正点については別に解説します。

健康と環境 I

Health and Environment I

学 年 第4学年 科目分類 必 修 前期·後期 前 期 単 位 1

教 授 別府 正敏 医療薬学科

講師平野和也医療薬物薬学科、医療衛生薬学科

学習目標 (GIO)

人々の健康の保持と疾病の予防、生活環境や生態系の保全と改善に貢献できるように、保健衛生分野(公衆衛生分野)、環境衛生分野の知識、技能、態度を、深く、かつ確実に修得し、応用力を身につける。

┃ 行動目標 (SBOs)

1	各種保健統計の定義と動向を説明できる。
2	健康と疾病をめぐる我が国の変遷、および現状と課題を説明できる。
3	疫学の役割と手法について説明できる。
4	要因・対照研究および患者・対照研究の概要を説明し、基本的な統計計算ができる。
5	健康維持と疾病予防の基本的概念とそのための我が国の制度と政策を説明できる。
6	近年問題となっている感染症の種類と発生動向を説明できる。
7	感染症予防のための我が国の法律や制度とその主な内容を説明できる。
8	生活習慣病の種類と動向について説明できる。
9	生活習慣病の予防法、予防対策について説明できる。
10	職業病の発生要因、発生動向、防止対策について説明できる。
11	地球環境と生態系の成り立ちについて説明できる。
12	人や生態系に有害な主な化学物質を列挙し、その特徴について説明できる。
13	主な化学物質の環境中での動態について説明できる。
14	有害な化学物質を規制する法や制度を説明できる。
15	地球規模での環境問題を列挙し、その原因と防止対策について説明できる。
16	環境中の非電離、電離放射線を列挙し、それぞれの特徴と生体への影響を説明できる。
17	廃棄物をめぐる問題とその対策を説明できる。
18	廃棄物に関連する制度や法律を挙げ、その主な内容を説明できる。
19	過去の主な公害事例を列挙し、その原因と健康被害の内容を説明できる。
20	環境基準の種類とその主な内容について説明できる。
21	水道水の水質問題とその対策について説明できる。
22	浄水法について説明できる。
23	飲料水の主な試験法について説明できる。
24	水質汚濁の原因とその防止対策について説明できる。
25	水質汚濁の主な試験法について説明できる。
26	下水・排水処理法について説明できる。

27	各種の大気汚染を列挙し、それらの発生動向について説明できる。
28	各種の大気汚染の防止対策を説明できる。
29	大気汚染物質の主な試験法を説明できる。
30	室内空気環境の主な指標を列挙し、その測定法を説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	別府、平野	保健衛生(公衆衛生)分野における最新情報	1 – 10
2	//	環境衛生分野における最新情報	11-30
3	//	保健衛生、環境衛生分野における発展的課題	
4	//	環境衛生における測定法と分析法(講義と演習)	23, 25, 29, 30
5	//	環境衛生における測定法と分析法 (講義と演習)	23, 25, 29, 30
6	//	環境衛生における測定法と分析法(講義と演習)	23、25、29、30
7	//	保健衛生および環境衛生(演習と講義)	1 – 30
8	//	保健衛生および環境衛生(演習と講義)	1 – 30
9	//	保健衛生および環境衛生(演習と講義)	1 – 30
10	//	保健衛生および環境衛生(演習と講義)	1 – 30
11	//	保健衛生および環境衛生(演習と講義)	1 – 30
12	//	保健衛生および環境衛生(演習と講義)	1 – 30
13	//	保健衛生および環境衛生(演習と講義)	1 – 30
14	//	総合評価	1 – 30

授業で行っている工夫:2年次に履修した保健衛生(公衆衛生)、3年次に履修した環境衛生の知識を、最新情報をもとに リニューアルし、かつ、同時期に実施する衛生薬学実習の環境関連項目と連携させ、講義、実習、 演習の連携と融合を図り、応用力が身につくよう配慮する。 必要に応じて教材や資料を配布する。

モデル・コアカリ: C11 健康(2)社会・集団と健康、(3)疾病の予防、

キュラムとの関連 C12 環境(1)化学物質の生体への影響【電離放射線の生体への影響】【非電離放射線の生体への影響】、(2)生活環境と健康

成績評価方法:出席を基本とし、演習、総合評価の成績等を合わせて総合的に評価する。

教 科 書:最新 衛生薬学(菊川、別府編 廣川書店) 薬学実験書「衛生薬学実習」(東京薬科大学編)

参考書: 国民衛生の動向2010/2011 (厚生統計協会)、図説 国民衛生の動向2010/2011 (厚生統計協会)、衛生試験法・注解2010 (日本薬学会編 金原出版)、必携・衛生試験法 (日本薬学会

編 金原出版)、環境衛生科学(大沢、内海編 南江堂)

オフィスアワー:在室時は不都合でない限り質問受付。

所属教室:環境生体応答学教室研究1号館401号

健康と環境Ⅱ

Health and Environment II

学	年	第4	学年	科目分類	必	修	前期・	後期	前	期	単	位	1	
教	授	平塚	明	医療薬学科	4									
准教	姓授	小倉	健一郎	医療衛生	薬学	科								
講	師	西山	貴仁	医療薬物薬	薬学科	科								

学習目標 (GIO)

我々の身の回りには、栄養素や生体成分などの生体維持にとって不可欠な物質以外に、外来物質あるいは異物と呼ばれる多種多様な化学物質が存在している。例えば、医薬品、食品添加物、農薬、合成麻薬・覚醒剤など、我々が意図的に創製した化学物質の他、非意図的に創り出された多くの環境汚染物質や天然物質などが有る。我々の日常生活は、それら様々な化学物質の恩恵のもとに成り立っている反面、それらが潜在的にもつ危険性に常に曝されている。多種多様な化学物質による危険性から回避でき、安全で安心な日常生活をおくれるようになるために、食品や環境中に存在する代表的な化学物質を例示しながら、その毒性発現機序、健康影響、毒性評価法に関する基本的知識を修得し、化学物質の安全評価と規制について学ぶ。

┃ 行動目標 (SBOs)

1	化学物質(重金属、残留農薬など)による食品汚染の具体例を挙げ、ヒトの健康におよぼす影響を説明できる。
2	重金属、農薬、PCB、ダイオキシンなどの代表的な有害化学物質の急性毒性、慢性毒性の特徴について説明できる。
3	環境ホルモン(内分泌撹乱化学物質)がヒトの健康におよぼす影響を説明できる。
4	重金属や活性酸素による障害を防ぐための生体防御因子について具体例を挙げて説明できる。
5	化学物質の毒性を評価するための主な試験法を列挙し、概説できる。
6	毒性試験の結果を評価するのに必要な量-反応関係、閾値、無毒性量(NOAEL)などについて概説できる。
7	化学物質の安全摂取量(1日許容摂取量など)について説明できる。
8	有害化学物質による人体影響を防ぐための法的規制(化審法など)を説明できる。
9	代表的な中毒原因物質の解毒処置法を説明できる。
10	毒性試験の生物学的意義を説明できる。
11	代表的な薬毒物の代謝と毒性ならびに検出法を説明できる。
12	化学物質の安全性評価と規制について説明できる。

回数	担 当	内 容	対応 (SBOs)		
1	平塚、小倉、西山	農薬の急性毒性、慢性毒性発現機構	1、2、3、4		
2	//	農薬の急性毒性、慢性毒性発現機構	1, 2, 3, 4		
3	//	PCB、ダイオキシンなどの急性毒性、慢性毒性発現機構	2、3		
4	//	PCB、ダイオキシンなどの急性毒性、慢性毒性発現機構	2、3		
5	//	重金属の急性毒性、慢性毒性発現機構	1, 2		
6	//	// 重金属毒性と生体防御因子			
7	//	4			
8	//	活性酸素毒性と生体防御因子	5		

必 修 科 科

回数	担 当	内 容	対応 (SBOs)
9	//	一般毒性試験と特殊毒性試験	6、11
10	//	一日許容摂取量、実質安全量、トキシコキネティクス、化学 物質の事前審査制度	7、8、9、13
11	//	麻薬、覚醒剤の代謝と毒性ならびに検出法	10、12
12	//	習慣性医薬品ならびにアルカロイド類の代謝と毒性ならびに 検出法	10、12
13	//	中毒原因物質と解毒処置	10
14	//	試験	

授業で行っている工夫:講義毎に行動目標を伝えさらに行動目標に関連するキーワードを提示する。薬毒物による中毒事件の報道などを紹介しつつ、講義内容に興味が湧くような授業としている。

教科書と講義内容の関連性が明確になるように指示しながら講義を行い、予習・復習がし易いように心がけている。プロジェクターの使用は、写真や複雑な図などの板書出来ないものに限って使用し、使用の際はプリントアウトしたものを配布する。

モデル・コアカリ: C12環境 (1) 化学物質の毒性、化学物質による中毒と処置

キュラムとの関連 C2化学物質の分析 (3) 薬毒物の分析

成 績 評 価 方 法: 1) 形成的評価 a) 知識:講義期間中に小テストや演習問題を行い、理解を進める。c) 態度:

講義期間中を通し出席および課題の提出を確認する。2)総括的評価 a)知識:定期試験、出席点、提出物を総合的に評価する。c)態度:出席不良者および課題未提出者は受験停止とするこ

とがある。

教 書:最新衛生薬学(菊川、別府編 廣川書店)

参考書:裁判化学(吉村編著)、衛生薬学ー健康と環境ー(井村、渡部編 丸善)

オフィスアワー: 平塚 明 いつでも可。 薬物代謝安全性学教室 研究棟403(教授室) 但し、要事前連絡。

小倉健一郎 いつでも可。 薬物代謝安全性学教室 研究棟403-2号 但し、要事前連絡。 西山 貴仁 いつでも可。 薬物代謝安全性学教室 研究棟403-2号 但し、要事前連絡。

所 属 教 室: 平塚 明 薬物代謝安全性学教室 研究棟 403

小倉健一郎 薬物代謝安全性学教室 研究棟403-2号 西山 貴仁 薬物代謝安全性学教室 研究棟403-2号

薬の効き方Ⅳ(薬物治療演習)

Pharmacology IV (Seminar in Pharmacology)

学	年	第45	学年	科目分類 必	修	前期	・後	期前	期	単位	1
教	授	畝崎	榮	医療薬物薬学科		教 :	授	平野	俊彦	医療衛生薬学科	4
准教	授	山田	純司	医療薬学科		准教:	授 '	竹内	裕紀	医療薬物薬学科	4
助	教	恩田	健二	医療衛生薬学科		助	教	田中	祥子	医療衛生薬学科	4
助	教	大友	隆之	医療薬学科		助	手 .	ШΠ	崇	医療薬物薬学科	4

学習目標 (GIO)

疾病に伴う症状と臨床検査値の変化など的確な患者情報を取得し、患者個々に応じた薬の選択、用法・用量の設定および各々の医薬品の「使用上の注意」を考慮した適正な薬物治療に参画できるようになるために、薬物治療に関する基本的知識と技能を修得する。本演習では、将来、適切な薬物治療に貢献できるようになるために、疾病と薬物治療 I 〜WIで学習した疾患およびそれらの治療に用いられる代表的な医薬品に関する基本的知識を総括し、薬物治療実施に必要な情報を自ら収集するための基本的技能を身につける。

┃ 行動目標 (SBOs)

1	代表的な疾患における薬物治療と非薬物治療(外科手術、食事療法など)の位置づけを説明できる。
2	指定された疾患例について必要な情報を収集し、適切な薬物治療法を考案することができる。
3	得られた患者情報から医薬品の効果および副作用などを評価し、対処法を提案する。
4	適切な治療薬の選択について、薬効薬理、薬物動態に基づいて判断できる。
5	指定された症候について、生じる原因とそれらを伴う代表的疾患を説明できる。
6	指定された検査項目について、検査値の異常から推測される主な疾病を挙げることができる。
7	指定された疾患あるいはその合併症の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
8	指定された治療薬の作用機序と主な副作用について説明できる。
9	基礎薬学、臨床、疫学、行動学的側面から、疾患、治療を総合的に考案することができる。

回数	担 当	内 容	対応 (SBOs)
1	畝崎、竹内、川口、 山田、大友、平野、 恩田、田中	イントロダクション、オリエンテーション、中間チェック	1~9
2	//	SGD:症例シナリオ 1 の問題抽出	1~9
3、4	//	症例シナリオ 1 の調査	1~9
5	//	SGD:症例シナリオ 1 についてまとめ	1~9
6	//	SGD:症例シナリオ2の問題抽出	1~9
7、8	//	症例シナリオ2の調査	1~9
9	//	SGD:症例シナリオ2についてまとめ	1~9
10	//	SGD:症例シナリオ3の問題抽出	1~9
11	//	SGD:症例シナリオ3についてまとめ	1~9

IX

回数	担 当	内 容	対応 (SBOs)
12	//	症例について各班毎にプレゼンテーション、ディスカッショ ン	1~9
13	//	ケースマッピング	1~9

授業で行っている工夫:本演習は、症例検討を行うことによって「疾病と薬物治療」の総合的理解を促そうとするものである。検討会に先立ち学生各自が与えられた課題についてSGDおよび調査を行い、班ごとに検討結果を発表する。発表に際しては発表者、他班への質問者、回答者などの役割を予め決めておく。2回目の検討会では教員を進行役として規模を縮小し、学生は個人の考えをもとに討論する。最後には模範例を提示して解説するケースマッピングを行うことにより、学生に対して一定の到達点を明示する。こうした工夫によって学生全員による参加型演習授業のレベル維持に努めている。

モデル・コアカリ: C13 薬の効くプロセス(2) 薬の効き方 I、(3)薬の効き方 Ⅱ

キュラムとの関連 C14 薬物治療(1)体の変化を知る、(2~4)疾患と薬物治療(心臓疾患等、悪性腫瘍疾患等、 消化器疾患等)

C15 薬物治療に役立つ情報(2)患者情報【収集・評価・管理】1)、4)、5)

成績評価方法:1) 形成的評価 a) 知識:中間チェックを行う。SGD:調査を通して評価。

b)態度:出席および、SGD:調査を通して評価。

c)技能:SGD・調査を通して評価。

2) 総括的評価 a) 知識:発表および、プロダクト。

b)態度:出席および、SGD・調査を通して評価。

c)技能:SGD:調査を通して評価。

教 科 書:プリント:薬の効き方IV(薬物治療演習)。講義中の配布

参 **考** 書: HP:Minds (医療情報サービス)

オフィスアワー:いつでも可。 但し、メールによる予約が必要。

所属教室: 畝崎・竹内・川口 医療実務薬学教室 ドラッグラショナル研究開発センター 3階2031号室

平野·恩田·田中 臨床薬理学教室 医療薬学研究棟2階2121、2122号室 山田·大友 総合医療薬学講座 医療薬学研究棟3階2131、2138号室

特記事項:本演習は13回の授業枠から構成されているが、1つの症例を経時的に流れに沿ったシナリオについて、SGD・調査をしていくことで、症例のClinical、Biological、Populational、

Behavioralな側面について学んでいく。

疾病と薬物治療団

Diseases and Pharmacotherapy VIII

単 位

1

科目分類 年 第4学年 必修 前期・後期 前 期 授 畝崎 医療薬学科、医療薬物薬学科、医療衛生薬学科 教 榮 医療薬学科、医療薬物薬学科、医療衛生薬学科 准教授 竹内 裕紀

学習目標 (GIO)

将来、適切な薬物治療に貢献できるようになるために神経・筋疾患、精神疾患、皮膚疾患、輸液療法、救急医療、緩和ケアおよびそれらの治療に用いられる代表的な医薬品に関する基本的知識を修得する。併せて薬物治療実施に必要な情報を自ら収集するための基本的技能を身につける。

┃ 行動目標 (SBOs)

1	神経・筋に関する代表的な疾患を挙げることができる。
2	パーキンソン病の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
3	認知症の病態生理、適切なケア・治療法などを説明できる。
4	アルツハイマー病の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
5	てんかんの病態生理、適切な治療薬、およびその使用上の注意について説明できる。
6	疼痛(急性・慢性疼痛、頭痛など)の病態生理について説明できる。
7	疼痛に用いる代表的治療薬を挙げることができる。
8	皮膚に関する代表的な疾患を挙げ、概説することができる。
9	皮膚疾患の代表的治療薬を挙げることができる。
10	アトピー性皮膚炎の病態生理、適切な治療薬、およびその使用上の注意について説明できる。
11	主な救急疾患の病態生理と治療の概要を説明できる。
12	一次救命処置、二次救命処置および救急医療における薬物療法の位置づけを説明できる。
13	薬物中毒の治療に関する基本的事項を列挙することができる。
14	緩和ケアと長期療養について概説できる。
15	代表的な精神疾患を挙げることができる。
16	精神疾患:統合失調症の病態生理、およびその適切な薬物療法、その他の治療法について説明できる。
17	精神疾患:気分障害(うつ病、双極性障害)の病態生理、およびその適切な薬物療法、その他の治療法について説明できる。
18	精神疾患不眠症の病態生理、およびその適切な薬物療法、その他の治療法について説明できる。
19	輸液療法:輸液療法の基本について概説することができる。
20	各輸液製剤の特徴について概説することができる。
21	輸液療法:水・電解質輸液について概説することができる。
22	輸液療法:栄養輸液について概説することができる。
23	輸液療法:体液・電解質異常に対する輸液について概説することができる。

IX

322101								
回数	担 当	内 容	対応 (SBOs)					
1	畝崎	パーキンソン病の病態および薬物療法	1~2					
2	//	認知症の病態および薬物療法	3~4					
3	//	てんかんの病態および薬物療法	5					
4	//	疼痛の病態および薬物療法	6~7					
5	//	皮膚疾患の病態および薬物療法	8~10					
6	//	救急疾患の病態および薬物療法	11~13					
7	//	緩和ケアと長期療養	14					
8	竹内	統合失調症の病態と薬物療法	15、16					
9	//	気分障害(うつ病と双極性障害)の病態と薬物療法	15、17					
10	//	不眠症の病態と薬物療法、神経症・心身症の病態と薬物療法	15、18					
11	//	輸液療法の基本 各輸液製剤の特徴(細胞外液、低張電解質輸液、単独電解質 製剤、血漿増量剤、栄養輸液)	19、20					
12	//	水・電解質輸液、栄養輸液	21, 22					
13	//	体液・電解質異常に対する輸液	23					

授業で行っている工夫: あらかじめ講義プリントを配布し、講義内容を明確にしている。パワーポイントなどを使用し、 講義に集中できる工夫をしている。練習問題を作成し、重要なポイントを確認できるよう工夫し ている。

モデル・コアカリ: C14 薬物治療 (3) 疾患と薬物治療 (腎臓疾患等) 【神経·筋の疾患】 (4)疾患と薬物治療 (精キュラムとの関連 神疾患等) 【皮膚疾患】 【緩和ケアと長期療養】

成 績 評 価 方 法: 定期試験の成績に受講態度(出席など)を加味して総合評価する。出席不良者は受験停止とする ことがある。

教 科 書:疾病と薬物治療Ⅷのプリント(生協にて販売)

参 考 書:治療薬マニュアル(医学書院)

▋授業内容

今日の治療薬(南江堂) 今日の治療指針(医学書院)

その他、各疾患ごとに専門書を使用(プリントに記載)

オフィスアワー: 畝崎 いつでも可。ただし要予約 医療棟3F畝崎教授室

竹内 いつでも可。ただし要予約 DR棟3F医療実務薬学教室

所属教室:畝崎医療実務薬学教室

竹内 医療実務薬学教室

臨床で活躍する薬剤師を目指して

Topics in Clinical Pharmacist

学	年	第4学年	科目分類 必 修	前期・後期 前期	単位 3(医療薬学特論他科目と)
教	授	馬場 広子	本学機能形態学教室	教授 市田公美	本学病態生理学教室
教	授	平野 俊彦	本学臨床薬理学教室	准教授 高柳 理早	本学臨床薬効解析学教室

学習目標 (GIO)

癌化学療法あるいは糖尿病などの専門分野で、特化した薬の知識を生かした、薬物療法の中心的 担い手となれる薬剤師としての素養を身につけるため、臨床で活躍する薬剤師の活動に必要な知 識、技能等の基礎から臨床までを理解する。

講師紹介

高橋 信一 杏林大学第3内科学教室 吉野 秀朗 杏林大学第2内科学教室

小林 庸子 杏林大学付属病院薬剤部 杏林大学付属病院薬剤部 圭史 野村 久祥 杏林大学付属病院薬剤部

克能 東京慈恵会医科大学糖尿病代謝内分泌内科

広子 本学機能形態学教室 馬場 公美 本学病態牛理学教室 市田 俊彦 本学臨床薬理学教室 理早 本学臨床薬効解析学教室 高柳

▋行動目標 (SBOs)

1	消化器疾患とその薬物療法について説明できる。			
2	がん専門薬剤師とその仕事について説明できる。			
3	循環器疾患とその薬物療法について説明できる。			
4	糖尿病療法指導薬剤師とその仕事について説明できる。			
5	ICT薬剤師とその仕事について説明できる。			
6	糖尿病、内分泌疾患とその薬物療法について説明できる。			

授業内容

回数	担 当	内 容	対応 (SBOs)
1, 2	高橋 信一	消化器疾患と薬物療法	1
3、4	野村 久祥	がん専門薬剤師とその仕事について	2
5, 6	吉野 秀朗	循環器疾患と薬物療法	3
7、8	小林 庸子	糖尿病療法指導薬剤師とその仕事について説明できる。	4
9、10	西・圭史	ICT薬剤師とその仕事について説明できる。	5
11-13	東条 克能	糖尿病、内分泌疾患と薬物療法	6

授業で行っている工夫: 各講義後、講義内容に関するレポートを時間内に提出してもらいます。これによって、講義内容 の理解度を確認します。

モデル・コアカリ: C-14(1)、C-14(3)、C-14(4)

キュラムとの関連

成績評価方法: 出席数、レポート

記事項: 近年、癌化学療法あるいは糖尿病などの専門分野で、特化した薬の知識を生かした、薬物療法の 中心的担い手となれる薬剤師の出現が切望されている。本講義では、このような臨床で活躍する 薬剤師の活動に必要な知識、技能などについて、医師や薬剤師など臨床現場で活躍している外来

講師を招聘し、基礎から臨床までを講義する。

教員からの一言: 講義後外来講師に対する質問を歓迎します。積極的に質問されることを期待しています。

Drug Development and Clinical Studies

3 (医療薬学特論他科目と) 年 第4学年 期 単 位 科目分類 修 前期・後期 前 必 平野 教 授 俊彦 医療薬学科 教 授 古田 降 医療薬学科 教 授 水間 俊 医療薬学科 准教授 山田 純司 医療薬学科

学習目標(GIO)

医薬品開発と臨床試験(治験)に精通した薬剤師の素養を身につけるために、関連分野の現場で活躍している外来講師の講義を聴講し、もって新薬開発時に必要な第Ⅰ~IV相試験の内容、治験に必要な統計学、CRCやSMOの業務と役割等について理解する。

講師紹介

菊池 貴 エーザイ臨床研究センター 大野 保則 エーザイ臨床研究センター 小川 智夫 エーザイ臨床研究センター 洞井由紀夫 エーザイ臨床研究センター 宮岸 秀明 エーザイ臨床研究センター

宮崎 雅彦 エクサム株式会社 平野 俊彦 本学臨床薬理学教室 古田 隆 本学臨床薬学教室

品開発と臨床試験

水間 俊 本学薬学実務実習教育センター

山田 純司 本学総合医療薬学講座

▋行動目標 (SBOs)

1	日本の治験の現状と将来について述べることができる。
2	臨床試験の概要と流れについて述べることができる。
3	第Ⅰ相試験(臨床薬理試験)の概要について説明できる。
4	第Ⅱ、Ⅲ相試験の概要について説明できる。
5	臨床試験における統計解析の概要について説明できる。
6	治験におけるCRC業務およびSMOの仕事と役割について説明できる。

授業内容

回	数	担 当	内 容	対応 (SBOs)
1.	2	菊池 貴	日本の治験の現状と将来	1
3、	4	大野 保則	臨床研究の流れ	2
5、	6	小川 智夫	第Ⅱ、Ⅲ相試験の実際	3
7、	8	洞井 由紀夫	第Ⅰ相試験(臨床薬理試験)の概要	4
9、	10	宮岸 秀明	臨床試験における統計解析の概要	5
11~	- 13	宮崎 雅彦	治験におけるCRC業務およびSMOの仕事と役割について	6

授業で行っている工夫: 医薬品開発の現場で活躍している各分野の選りすぐりの外来講師を集めました。特に、エーザイ株式会社の臨床研究センターから招へいする5名の講師には、治験の全概要をそれぞれの得意な分野の視点からもれなくお話いただきます。最後に、SMOの宮崎先生から実際の治験業務について、最新の情報と現場の生々しいお話を交えてまとめていただきます。各講義後、講義内容に関するレポートを時間内に提出してもらいます。これによって、講義内容の理解度を確認します。

モデル・コアカリ: C15 (3)、C17 (1)、(2)、(4)、(5)

キュラムとの関連

成績評価方法: 出席数、レポート

オフィスアワー: 平野 俊彦 在室時は随時受け付けます。 臨床薬理学教室 古田 隆 在室時は随時受け付けます。 臨床薬学教室

「「属教室: 平野」俊彦 臨床薬理学教室 古田 隆 臨床薬学教室

教員からの一言: 臨床で活躍する薬剤師の仕事の中には、臨床試験も含まれています。またCRO やSMOへの就職を希望する方にも、現場の仕事を知る貴重な講義が待っています。

I 心修科目

Ⅱ 2年次

必修科目

必修科目 № 5年

科次

IV

№ 必修科目

№ 6年次

選択科目

選3年次

選択科目

XI 実習科目

中医方剤学

Prescription of Traditional Chinese Medicine

 学年
 第4学年
 科目分類
 必修
 前期・後期
 前期
 単位
 3(医療業労働性日と) (無世で申認定する)

准教授 猪越 英明 中国医学研究室

学習目標 (GIO)

本邦においては、西洋医学とともに中医学(中国医学)の知識に基づく治療(漢方療法)が行われる。そこで将来薬剤師として活躍する場面では、より実践的な中医学の知識が求められることになる。本講義は、漢方薬を含めた臨床中医学のより実践的知識を修得することを目的とする。また、市場に広く普及するサプリメント(健康食品)に関する基本的な知識、特に西洋薬との飲み合わせなどの留意点についても学習する。

▍行動目標 (SBOs)

1	中医学の歴史を学ぶ
2	中医学の基礎理論を学ぶ
3	中医学的な病気のとらえ方を理解する
4	代表的な方剤の使い方と注意点を理解する
5	経絡(ツボ)理論を学ぶ
6	サプリメントに関する基本知識を学ぶ

▋授業内容

回数	担 当	内 容	対応 (SBOs)
1	猪越 英明	中医学の歴史と成り立ち	1
2	//	中医基礎理論① 整体観・陰陽五行説など	2
3	//	中医基礎理論② 気・血・津液。五臓六腑について	2
4	//	臨床中医学① 中医学的な診断法(四診)	3
5	//	臨床中医学② 弁証法	3
6	//	臨床中医学③ 婦人科への対応	3
7	//	臨床中医学④ 生活習慣病への対応	3
8	//	臨床中医学⑤ メタボリック症候群への対応	3
9	//	中医方剤学① 日本薬局方収載の方剤について	4
10	//	中医方剤学② 代表的な方剤の使い方と注意点について	4
11	//	中医方剤学③ 代表的な方剤の使い方と注意点について	4
12	//	経絡(つぼ)療法 鍼灸理論について	5
13	//	サプリメントの基礎知識	6

授業で行っている工夫: 初学者にも理解できるよう、スライドを中心に分かりやすく解説する。

モデル・コアカリ: C7 自然が生み出す薬物

キュラムとの関連 (1) 薬になる動植鉱物 (2) 薬の宝庫としての天然物 (3) 現代医療の中の生薬・漢方薬

成績評価方法: 定期試験の成績に出席、小テストを加味した総合評価

教 科 書:プリント配布

参 考 書:わかる中国医学(邱 紅梅著 原)

中医学入門(神戸中医学研究会編著 医歯薬出版)

中医臨床のための「中薬学」「方剤学」(神戸中医学研究会編著 医歯薬出版)

オフィスアワー: 猪越 授業後 薬学事務課へ連絡のこと

XI

臨床で活躍する薬剤師を目指して(I)

Introduction to Clinical Pharmacist (I)

学	年	第4学年	科目分類 必 修	前期・後期 前	期	単位 3 (医療薬学網 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
教	授	笹津 備規	病原微生物学教室	教授 山田	安彦	臨床薬効解析学教室
教	授	平野 俊彦	臨床薬理学教室	准教授 高柳	理早	臨床薬効解析学教室
准教	效授	篠原 佳彦	病態生理学教室	准教授 野口	雅久	病原微生物学教室
准教	效授	山田 純司	総合医療薬学講座	准教授 山口	宜秀	機能形態学教室
講	師	長谷川 弘	病態生理学教室	講 師 林	明子	機能形態学教室
助	教	横山 晴子	臨床薬効解析学教室	助 教 大友	隆之	総合医療薬学講座
助	教	中村真希子	病態生理学教室	助 教 中南	秀将	病原微生物学教室
助	教	石橋 智子	機能形態学教室			

学習目標 (GIO)

癌化学療法、抗菌薬療法、あるいは糖尿病治療などの専門分野で、特化した薬の知識を生かした、 薬物療法の中心的担い手となれる薬剤師としての素養を身につけるため、演習を通じて臨床で活 躍する薬剤師の活動に必要な知識、考え方、および発表能力を修得する。

講師紹介

笹津 備規 病原微生物学教室 Ш⊞ 安彦 臨床薬効解析学教室 高柳 理早 臨床薬効解析学教室 篠原 病態生理学教室 佳彦 野口 雅久 病原微生物学教室 山田 純司 総合医療薬学講座 平野 俊彦 臨床薬理学教室 柳田 修 杏林大学医学部外科 山口 宜秀 機能形態学教室 長谷川 弘 病態生理学教室 明子 機能形態学教室 横山 晴子 臨床薬効解析学教室 大友 隆之 総合医療薬学講座 中南 秀将 病原微生物学教室

┃ 行動目標 (SBOs)

1	癌化学療法、抗菌薬療法、あるいは糖尿病などの専門分野における課題、症例、問題点等について調査し、 その内容を纏める。
2	1 で調査した項目について、5 ~ 6名のグループの中で意見を述べ、討論できる。
3	1 で調査した項目について、グループとしての意見をまとめ、発表用スライドを作成できる。
4	1 で調査した項目について発表し、それに関するグループとしての意見を述べることができる。
5	他のグループの発表を聴講し、それに対して質問し、または自分の意見を述べる。
6	演習に関連した臨床医の話を聴講し、その内容を説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1~4	全担当者	演習の進め方に関する説明と課題に基づくグループ分け、お よび課題の調査	1, 2
5、6	柳田 修	悪性腫瘍と癌化学療法(講義)	6
7~9	全担当者	課題の調査、調査項目に関するグループ討論、発表用スライドと原稿の作成	2、3
10~13	//	調査項目に関する発表と全体討論	4, 5

授業で行っている工夫: 臨床医の外来講師により、演習内容に関する講義を行なう。もって、それ以降のSGDの参考に

してもらう。

モデル・コアカリ: C-14(1)、C-14(3)、C-14(4)

キュラムとの関連

成績評価方法: 出席数、調査・討論における積極性や態度、および発表内容と全体討論などを総合的に評価する。

オフィスアワー: 各担当者が個別に定める。

所 属 教 室: 医療薬学科の6つの教室の教員

病原微生物学教室、臨床薬効解析学教室、総合医療薬学講座、臨床薬理学教室、病態生理学教室、

機能形態学教室

特記事項:近年、医療における種々の専門分野で特化した薬の知識を生かした、薬物療法の中心的担い手と

なれる薬剤師が切望されている。本演習のねらいは、このような臨床で活躍する薬剤師の活動に 関する種々の課題を設定し、それに関する調査・討論を通じて医療薬学科学生の臨床への意識を

高めることにある。

臨床で活躍する薬剤師を目指して(Ⅱ)

Introduction to Clinical Pharmacist (II)

学 年	第4学年	科目分類	必 修	前期・後期	前期	単位 3 (医療薬学演習 I 他科目)
教 授	畝崎 榮	医療薬学科		教 授	平野 俊彦	医療薬学科
准教授	井上みち子	医療薬学科		准教授	宮本 法子	医療薬学科
准教授	湯浅 洋子	医療薬学科		准教授	竹内 裕紀	医療薬学科
助教	恩田 健二	医療薬学科		助教	田中(祥子	医療薬学科
助教	別生伸太郎	医療薬学科		助手	濱田 真向	医療薬学科
助手	川口 崇	医療薬学科		非常勤講師	木村 嘉之	株式会社アインファーマシー

学習目標 (GIO)

癌化学療法、抗菌薬療法、あるいは糖尿病治療などの専門分野で、特化した薬の知識を生かした、 薬物療法の中心的担い手となれる薬剤師としての素養を身につけるため、演習を通じて臨床で活 躍する薬剤師の活動に必要な知識を修得する。

講師紹介

畝崎 榮 本学医療実務薬学教室 平野 俊彦 本学臨床薬理学教室

井上みち子 本学薬学実務実習教育センター

宮本 法子 本学社会薬学研究室

湯浅 洋子 本学薬学基礎実習教育センター

竹内 裕紀 本学医療実務薬学教室 恩田 健二 本学臨床薬理学教室 田中 祥子 本学臨床薬理学教室

別牛伸太郎 本学薬学実務実習教育センター 溶田 真向 本学薬学実務実習教育センター

 $III\Box$ 本学医療実務薬学教室

┃ 行動目標 (SBOs)

1	チーム医療、コミュニケーション、在宅医療、専門薬剤師などの専門分野における課題、症例、問題点等について調査し、その内容を纏める。
2	1 で調査した項目について、 $5\sim6$ 名のグループの中で意見を述べ、討論できる。
3	1 で調査した項目について、グループとしての意見をまとめ、発表用スライドを作成できる。
4	1 で調査した項目について発表し、それに関するグループとしての意見を述べることができる。
5	他のグループの発表を聴講し、それに対して質問し、または自分の意見を述べる。
6	臨床で活躍する薬剤師の話を聴講し、その内容を説明できる。

▋授業内容

回数	担 当	内 容	対応 (SBOs)
1	木村 嘉之	保険調剤薬局における薬剤師の取り組み(講義)	6
2~4	平野 俊彦 他	演習の進め方に関する説明と課題に基づくグループ分け、および課題の調査	1, 2
5~10	全担当者	課題調査、調査項目に関するグループ討論、発表用スライドと原稿の作成	1~5

モデル・コアカリ: C-14 (1)、C-14 (3)、C-14 (4)

キュラムとの関連

成績評価方法: 出席数、調査・討論における積極性や態度、および発表内容と全体討論などを総合的に評価する。 オフィスアワー: 全担当者が個別に定める。

特 記 事 項:近年、医療における種々の専門分野で特化した薬の知識を生かした、薬物療法の中心的担い手と なれる薬剤師が切望されている。本演習のねらいは、このような臨床で活躍する薬剤師の活動に 関する種々の課題を設定し、それに関する調査・討論を通じて医療薬学科学生の臨床への意識を 高めることにある。

 \blacksquare

医薬品開発と臨床試験	Drug Developments and Clinical Studies
------------	--

学	年	第4学年	科目分類 必 修	前期・後期	前期	単 位 3 (医療薬学論習「他科目)
教	授	土橋 朗	医薬品情報解析学教室	教 授 林	正弘	薬物動態制御学教室
教	授	平塚 明	薬物代謝安全性学教室	教 授 平 里	予 俊彦	臨床薬理学教室
教	授	古田 隆	臨床薬学教室	教 授 渡辽	2 謹三	一般用医薬品学教室
准教	姓授	小倉健一郎	薬物代謝安全性学教室	教 授 水 間	慢	薬学実務実習教育センター
准教	姓授	富田 幹雄	薬物動態制御学教室	准教授 柴崎	治美	臨床薬学教室
講	師	西山 貴仁	薬物代謝安全性学教室	助教 横川	彰朋	臨床薬学教室
助	教	成井 浩二	一般用医薬品学教室	助手 倉田	香織	医薬品情報解析学教室

学習目標 (GIO)

医薬品開発と臨床試験(治験)に精通した薬剤師としての素養を身につけるために、演習を通じ 新薬開発時に必要な第Ⅰ~Ⅳ相試験の内容、薬物動態学、構造活性相関、薬物相互作用、および 有害事象等について理解する。

講師紹介

土橋 医薬品情報解析学教室 朗 正弘 薬物動態制御学教室 平塚 明 薬物代謝安全性学教室 小倉健一郎 薬物代謝安全性学教室 古田 隆 臨床薬学教室 平野 臨床薬理学教室 俊彦 薬学実務実習教育センター 水間 俊 柴崎 浩美 臨床薬学教室 富田 幹雄 薬物動態制御学教室 西山 貴仁 薬物代謝安全性学教室 渡辺 謹三 一般用医薬品学教室 成井 浩二 一般用医薬品学教室 彰朋 臨床薬学教室 横川 倉田 香織 医薬品情報解析学教室 杉山健太郎 新潟大学病院薬剤部

▋行動目標 (SBOs)

1	医薬品開発と臨床試験(治験)に関連した課題について調査し、その内容を纏める。
2	1 で調査した項目について、5 ~ 6 名のグループの中で意見を述べ、討論できる。
3	1 で調査した項目について、グループとしての意見をまとめ、発表用スライドを作成できる。
4	1 で調査した項目について発表し、それに関するグループとしての意見を述べることができる。
5	他のグループの発表を聴講し、それに対して質問し、または自分の意見を述べる。
6	臨床で活躍する薬剤師の治験に関する話を聴講し、その内容を説明できる。

回数	担 当	内 容	対応 (SBOs)
1~3	小倉 健一郎 他	演習の進め方に関する説明と課題に基づくグループ分け、お よび課題の調査	1、2
4~8	全担当者	課題の調査、調査項目に関するグループ討論、発表用スライドと原稿の作成	2~5

X

 回数
 担当
 内容

 9、10
 杉山 健太郎
 大学病院における治験業務と薬剤師の役割
 6

 11~13
 全担当者
 調査項目の発表と全体討論
 5

授業で行っている工夫:調査討論ばかりでなく、外来講師を招聘し2コマ分の講義を取り入れている。講義によって、臨 床薬剤師の治験における業務や役割を知り、もって討論や発表の参考とする。

モデル・コアカリ: C - 17(1) - (5)

キュラムとの関連

成績評価方法: 出席数、調査・討論における積極性や態度、および発表内容と全体討論などを総合的に評価する。

オフィスアワー: 全担当者が個別に定める。

所属教室: 土橋 朗·倉田香織 医薬品情報解析学教室 研究2号館2階206号室

特 記 事 項:薬剤部業務の一環として、医薬品開発と臨床試験に関する知識をもつことは重要である。本演習

のねらいは、医薬品開発における課題や問題点に関する調査・討論、および大学病院薬剤部で活躍する外来講師の話を通じ、医療薬学科学生に治験業務への関心と理解を深めてもらうことにあ

る。

創薬概論 Introduction to Research in Drug Discovery

学 年	第4学年	科目分類 必 修	前期・後期	前期	単 位	3 (医療薬物薬学特論他科目) と併せて単位認定する)
教 授	田口武夫	有機合成化学教室				
教 授	豊田 裕夫	臨床ゲノム生化学教室				
教 授	野水 基義	病態生化学教室				
教 授	田野中浩一	分子細胞病態薬理学教室				
教 授	青柳 榮	機能性分子設計学教室				
准教授	宮岡 宏明	生物分子有機化学教室				
准教授	一栁 幸生	天然医薬品化学教室				
准教授	高木 教夫	分子細胞病態薬理学教室				
准教授	柳田 顕郎	薬物生体分析学教室				
准教授	高島 由季	製剤設計学教室				

学習目標 (GIO)

広範な研究領域を包含し、急速な進展を遂げている創薬科学について医療薬物薬学科所属教室が分担して解説する。授業担当者のこれまでの研究や周辺領域の話題、自身の研究が関連する創薬科学の最新情報などを取り上げ、研究の面白さを盛り込んで種々の創薬領域について紹介する。この授業で創薬科学に触れることにより、将来創薬方面に進むにあたっては多様な研究・技術の領域があることを理解し、また医療方面に進むにあたっては臨床におけるニーズを創薬現場に的確に情報発信できる知識の習得を目指している。さらに、5年次には実務実習が必修科目であり、医療現場で患者に接しながら薬について学ぶなかで、医療現場からの創薬へのニーズについて理解できることを目標としている。講義を通して、問題意識の提示・解決法について、プレゼンテーション、レポート提出などを通して習得させる。

▋行動目標 (SBOs)

1	創薬における有機合成の役割を概説できる。
2	海洋生物由来の医薬品を概説できる。
3	創薬におけるメディシナルおよびプロセスケミストリーの役割を概説できる。
4	創薬における分析化学の役割を概説できる。
5	天然物からの医薬品開発の経緯を概説できる。
6	遺伝子機能に基づく創薬について概説できる。
7	タンパク・ペプチド性医薬の創製について概説できる。
8	創薬における薬理評価の役割を概説できる。
9	新薬創製における薬剤学、製剤設計学の役割を概説できる。

回数	担 当	内 容	対応 (SBOs)
1	田口	有機合成化学と創薬:分子設計、合成、評価の実例	1
2	宮岡	海洋生物からの医薬品の開発	2
3	青柳	医薬品の創製と開発のプロセス	3
4	柳田	創薬を支える分析科学の最前線	4
5	一栁	天然資源からの創薬:高等植物からの抗がん薬の開発	5

回数	担 当	内 容	対応 (SBOs)
6	豊田	ゲノムとゲノム創薬	6
7	野水	タンパク・ペプチド性医薬(1)	7
8	//	タンパク・ペプチド性医薬 (2)	7
9	田野中	薬理評価の最先端 (1)	8
10	高木	薬理評価の最先端 (2)	8
11	高島	創剤最前線:探索研究段階における薬剤学の役割と、本来、 薬にならない化合物を薬にする製剤設計学	9
12		全講師による総合討論	

授業で行っている工夫:本講義は医療薬物薬学科独自のカリキュラムであり、医療および薬学の進歩発展に寄与するため、 各教員がもつ高度で、かつ最新の研究内容とその背景を概説することによって時代に即応した医療人教育を推し進めるよう努力している。また、学生と講師陣との総合討論の場を設け、本学科 教員が創薬研究を通じて時代に即応した医療人教育を推し進めていることを学生に理解してもらい、なおかつ医療の中での創薬について幅広くその考えを共有し、学生の知識・技能・態度に価値ある変化を生み出せるよう努力している。

モデル・コアカリ:本講義は医療薬物薬学科独自のカリキュラムであり、モデル・コアカリキュラムを基本とした画 キュラムとの関連 一的教育の範疇を超越したオリジナル性の高いものである。本講義は学生自身の独自性や将来構想を築くための広範な情報・知識を、担当講師の幅広い経験と知識を中心に提供するものである。

成 績 評 価 方 法: 出席およびレポートにより総合的に評価する。なお、受講態度や出席状況の不良者については厳格な評価で臨む。

参考書:講義担当者によるプリント資料の配布あり

オフィスアワー: 原則いつでも可(野水、田口または講義担当者に事前に連絡)。

データ解析集中講座 Introduction to Data Analysis

学 年 第	第4学年	科目分類	必 修	前期・後期	前 期	単 位	3 (医療薬物薬学特論他科目) と併せて単位認定する
教 授	渋澤 庸一			教 授	田口 武夫		
非常勤講師	磯崎 充宏			非常勤講師	松井 研一		
非常勤講師	中村一郎						

学習目標 (GIO)

医薬品の開発は候補化合物の発見から始まり、その後、製剤化試験、動物試験を経て、治験といわれる臨床試験に適用され、国による審査・承認を経て医薬品として市場に出て行く。その後、多くの医療機関で使用されている医薬品の安全性と副作用に関する情報の収集・調査が実施される。このような一連の医薬品開発において、膨大な量の情報が集められる。本特論では、1)候補化合物の薬理学的評価、2)臨床開発(治験から申請)、3)臨床使用調査(市販後調査)のデータ解析について実例を用いて解説し、論理的展開についての基礎的理解を習得することを目的とする。

講師紹介

磯崎 充宏 日本たばこ産業株式会社 医薬部門統計解析

松井 研一 シミック株式会社 疫学・生物統計部

中村 一郎 アステラス製薬株式会社 信頼性保証本部育薬情報部市販後調査グループ

行動目標 (SBOs)

1	医薬品開発の流れを概説できる。		
2	臨床疫学の用語を理解し、説明できる。		
3	治験における第一相から第三相試験の概要が説明できる。		
4	症例対照研究、ランダム化、盲検化など臨床研究デザインの説明ができる。		
5	標準偏差と標準誤差の違いが説明できる。		
6	帰無仮説と対立仮説について説明できる。		
7	信頼区間、P値について説明できる。		
8	医薬品創製における治験の役割を説明できる。		
9	市販後調査の制度とその意義について説明できる。		

回数	担 当	内 容	対応 (SBOs)
1	磯崎	医薬品開発のプロセス概要、臨床疫学の基礎(1)	1, 2
2	//	臨床疫学の基礎 (2)	2, 4
3	//	臨床研究のデザイン	4
4	//	生物統計の基礎(1)	5、6、7
5	//	生物統計の基礎 (2)	5、6、7
6	//	生物統計の基礎(3)とまとめ	5、6、7
7	中村	市販後調査 (1): 制度とその意義	9
8	//	市販後調査(2):実施例	9

回数	担 当	内 容	対応 (SBOs)
9	//	市販後調査(3): 大規模試験と国際共同試験	9
10	松井	臨床試験 (1): 概要とその意義	3, 8
11	//	臨床試験(2):生物統計の基礎と実施例	5~8
12	//	臨床試験(3):生物統計の基礎と実施例	5~8

授業で行っている工夫: 本特論講義は生物統計の基礎をベースに論理的思考の展開の習熟を目的としているが、内容につ

いては臨床への応用のアップデートな実例を盛り込んで解説する。そのため、講師はそれぞれの

分野の実践担当者である。

モデル・コアカリ: C17 医薬品の開発と生産(5) バイオスタティスティクスの内容を含むものである。

キュラムとの関連

成績評価方法: 出席およびレポートなどにより総合的に評価する。なお、受講態度や出席状況の不良者について

は厳格な評価で臨む。

参考: 講義担当者によるプリント資料の配布あり

参考図書「一目でわかる医科統計学」 第2版 メディカル・サイエンス・インターナショナル

オフィスアワー:原則いつでも可 (渋沢あるいは田口に事前に連絡)

 \blacksquare

Prescription of Traditional Chinese Medicine

年 第4学年 必修 前 期 科目分類 前期・後期

准教授 猪越 英明 中国医学研究室

学習目標 (GIO)

本邦においては、西洋医学とともに中医学(中国医学)の知識に基づく治療(漢方療法)が行われる。 そこで将来薬剤師として活躍する場面では、より実践的な中医学の知識が求められることになる。 本講義は、漢方薬を含めた臨床中医学のより実践的知識を修得することを目的とする。また、市 場に広く普及するサプリメント(健康食品)に関する基本的な知識、特に西洋薬との飲み合わせ などの留意点についても学習する。

▋行動目標 (SBOs)

1	中医学の歴史を学ぶ		
2	中医学の基礎理論を学ぶ		
9 中医学的な病気のとらえ方を理解する			
4	代表的な方剤の使い方と注意点を理解する		
5 経絡 (ツボ) 理論を学ぶ			
6	サプリメントに関する基本知識を学ぶ		

授業内容

回数	担 当	内 容	対応 (SBOs)
1	猪越 英明	中医学の歴史と成り立ち	1
2	//	中医基礎理論① 整体観・陰陽五行説など	1
3	//	中医基礎理論② 気・血・津液。五臓六腑について	2
4	//	臨床中医学① 中医学的な診断法(四診)	3
5	//	臨床中医学② 弁証法	3
6	//	臨床中医学③ 婦人科への対応	3
7	//	臨床中医学④ 生活習慣病への対応	3
8	//	臨床中医学⑤ メタボリック症候群への対応	3
9	//	中医方剤学① 日本薬局方収載の方剤について	4
10	//	中医方剤学② 代表的な方剤の使い方と注意点について	4
11	//	中医方剤学③ 代表的な方剤の使い方と注意点について	4
12	//	経絡(つぼ)療法 鍼灸理論について	5
13	//	サプリメントの基礎知識	6

授業で行っている工夫:初学者にも理解できるよう、スライドを中心に分かりやすく解説する。

モデル・コアカリ: C7 自然が生み出す薬物

キュラムとの関連 (1) 薬になる動植鉱物 (2) 薬の宝庫としての天然物 (3) 現代医療の中の生薬・漢方薬

成績評価方法: 定期試験の成績に出席、小テストを加味した総合評価

教 科 書:プリント配布

書:わかる中国医学(邱 紅梅著 原)

中医学入門(神戸中医学研究会編著 医歯薬出版)

中医臨床のための「中薬学」「方剤学」(神戸中医学研究会編著 医歯薬出版)

オフィスアワー: 猪越 授業後 薬学事務課へ連絡のこと

VI

医薬品創製と基礎(物理系・化学系)

Drug Discovery and Production

学 年	第4学年	科目分類 必 修	前期・後期 前期	単位 3 (医療薬薬学演習1他科)
教 授	渋澤 庸一	薬物生体分析学教室	教授 竹谷 孝一	天然医薬品化学教室
教 授	青柳 榮	機能性分子設計学教室	准教授 一柳 幸生	天然医薬品化学教室
准教授	宮岡 宏明	生物分子有機化学教室	准教授 柳田 顕郎	薬物生体分析学教室
講師	釜池 和大	生物分子有機化学教室	講師、古石一裕治	機能性分子設計学教室
講師	田代 櫻子	薬物生体分析学教室		

学習目標 (GIO)

医薬品創製は、有機化学、物理化学、生物化学を含めた極めて幅広いサイエンスを基盤として成り立っている。すなわち、独創的な新しい医薬品を創製するには、ゲノム科学をはじめ、分子生物学、有機合成化学、薬理学、毒性学、薬物動態学、製剤学、情報科学などに関する知識の習得と実践的応用が必要である。本演習では、物理系薬学、化学系薬学の基礎をしっかりと築き上げ、医薬品創製に関する知識と態度を習得する。それぞれの分野での演習課題を提示し、それについて調査、まとめを行って発表する。

┃ 行動目標 (SBOs)

1	水溶液中の種々の化学反応の平衡定数を説明できる。
2	緩衝作用について具体例をあげて説明できるとともに、代表的な緩衝液の特徴と調製法を説明できる。
3	クロマトグラフィーの種類を列挙し、それぞれの特徴と分離機構を説明できる。
4	臨床分析分野で用いられる代表的な機器分析法を列挙できる。
5	NMRスペクトルの概要と測定法を説明できる。
6	IRスペクトルの概要と測定法を説明できる。
7	マススペクトルの概要と測定法を説明できる。
8	代表的な機器分析法を用いて、基本的な化合物の構造決定ができる。
9	薬学領域で用いられる代表的な化合物を慣用名で記述できる。
10	基本的な有機化合物をIUPACの規則に従って命名することができる。
11	有機化合物の立体異性体について、例を挙げ説明できる。
12	Fischer投影式とNewman投影式を用いて有機化合物の構造を書くことができる。
13	アルケン、アルキンの代表的な反応を列挙し、説明できる。
14	芳香族化合物の代表的な反応を列挙し、説明できる。
15	求核置換反応、脱離反応の機構について、立体化学を含めて説明できる。
16	アルコール、アルデヒド、ケトン、カルボン酸、カルボン酸誘導体の性質と代表的な反応を列挙し、説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	渋澤・柳田・田代	溶液内化学平衡論	1
2	//	pHの計算、緩衝液	1, 2
3	//	機器を用いた分析法	3、4

XI 実習科日

回数	担 当	内 容	対応 (SBOs)
4	竹谷·一柳	NMRスペクトル	5
5	//	IRスペクトル、マススペクトル	6、7
6	//	基本的な化合物の構造決定	8
7	青柳 榮·古石	有機化合物の命名法	9, 10
8	//	立体異性体	11, 12
9	//	アルケン、アルキンの反応	13
10	宮岡・釜池	芳香族化合物の反応	14
11	//	求核置換反応、脱離反応	15
12	//	アルコール、アルデヒド、ケトン、カルボン酸、カルボン酸 誘導体の反応	16

授業で行っている工夫: 演習のプリントはWeb公開しており、予習、復習に役立つようにしている。毎回、講義の最初にキーワードを示し、目標を明確にしている。

モデル・コアカリ: C2 化学物質の分析 (1) 化学平衡、(2) クロマトグラフィー、(3) 分析技術の臨床応用 キュラムとの関連 C4 化学物質の性質と反応 (1) 化学物質の基本的性質、(2) 有機化合物の骨格、(3) 官能基、 (4) 化学物質の構造決定

成績評価方法:1)形成的評価:各演習の課題の提出とプレゼンテーションを加味して評価する。

2) 総括的評価:4回の演習すべてに合格して単位認定とする。

教 科 書: プリントを頒布

考 書: 演習のプリントはWeb公開しており、予習、復習に役立つようにしている。毎回、講義の最初に キーワードを示し、目標を明確にしている。

オフィスアワー: 渋澤・柳田・田代 いつでも可。 竹谷・一柳 いつでも可。 青柳 榮・古石 いつでも可。

宮岡・釜池 いつでも可。 なるべくメールにて予約をしてください。

医薬品創製と基礎(生物系・医療薬学系)

Basic and Clinical Application of Pharmaceutical Sciences

学	年	第4学年	科目分類	必 修	前期・後期	前期	1	単 位	3(医療薬物薬学演習他科 目と併せて単位認定する)
教	授	田野中浩一	分子細胞病態	態薬理学教室					
教	授	豊田 裕夫	臨床ゲノム	生化学教室					
教	授	野水 基義	病態生化学	教室					
准教	授	大山 邦男	臨床ゲノム	生化学教室					
准教	授	高木 教夫	分子細胞病態	態薬理学教室					
准教	授	吉川 大和	病態生化学	教室					
准教	授	高島 由季	製剤設計学	教室					
講	師	内手 昇	臨床ゲノム	生化学教室					
助	教	保住建太郎	病態生化学	教室					
助	教	袁 博	臨床ゲノム	生化学教室					
助	教	金沢貴憲	製剤設計学	教室					

学習目標 (GIO)

独創的な新しい医薬品を創製するには、ゲノム科学をはじめ、分子生物学、有機合成化学、薬理学、毒性学、薬物動態学、製剤学、情報科学など、有機化学、物理化学、生物化学分野にわたる幅広いサイエンスに関する知識の習得と実践的応用が必要である。本演習では、生物系薬学、医療系薬学の基礎をしっかりと築き上げ、医薬品創製に関する知識と態度を習得する。具体的にはそれぞれの分野での演習課題を提示し、それについて調査、まとめを行って発表する。

▋行動目標 (SBOs)

1 心臓および血管の構造・生理機能、細胞内情報伝達を含めた心機能および代表的な循環器疾患の病態を説明できる。 2 循環器疾患の代表的な治療薬を挙げ、その薬理作用、機序、主な副作用について説明できる。 中枢神経系の構造、神経伝達物質とその受容体を含めた脳機能および代表的な中枢神経疾患の病態を説明できる。
3 中枢神経系の構造、神経伝達物質とその受容体を含めた脳機能および代表的な中枢神経疾患の病態を説明できる。
3
4 中枢神経疾患・精神疾患の代表的な治療薬を挙げ、その薬理作用、機序、主な副作用について説明できる。
5 体内における糖質、アミノ酸、脂質の構造・機能、酵素の性質と役割について説明できる。
6 糖質、脂質およびアミノ酸の代謝異常と病態発症との関連性について説明できる。
7 核酸の構造、代謝について説明できる。
8 遺伝子発現、生体の代謝の総合的調節ならびに情報伝達について説明できる。
9 細胞の構造、機能および組織構築について説明できる。
10 タンパク質、糖質および脂質の分子構造について説明できる。
11 代表的なアミノ酸、タンパク質、糖質および脂質を列挙し、基本的性質を説明できる。
12 遺伝、進化、発生、分化について説明できる。
13 各製剤の代表的な種類と性質について説明できる。
14 代表的な製剤の有効性と安全性評価法について説明できる。
15 DDSの概念と有効性、代表的なDDS製剤について説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	田野中・高木	循環器疾患	1、2
2	//	循環器疾患治療薬·脳機能	2、3
3	//	中枢神経疾患治療薬	3、4
4	豊田・大山・内手	生体成分の構造・機能	5
5	//	生体成分の代謝	6
6	//	遺伝子疾患	7、8
7	野水・吉川・保住	細胞の構造・機能と創薬	9
8	//	タンパク質と創薬	10、11
9	//	発生・再生と創薬	11、12
10	高島・金沢	各種製剤とその製剤化	13~15
11	//	製剤に関する試験法	13~15
12	//	DDS製剤について	13~15

授業で行っている工夫:キーワードを示し、目標を明確にし、レポートを提出させて進捗状況をチェックしている。

モデル・コアカリ: C8 生命体の成り立ち (1) ヒトの成り立ち、(2) 生命体の基本単位としての細胞、(3) 生体キュラムとの関連 の機能調節

C9 生命をミクロに理解する (1) 細胞を構成する分子、(2) 生命情報を担う遺伝子、(3) 生命活動を担うタンパク質、(4) 生命エネルギー、(5) 生命活性分子とシグナル分子、(6) 遺伝子を操作する

C13 薬の効くプロセス (1)薬の作用と生体内運命、(2)薬の効き方 I、(3)薬の効き方 I、(4)薬物の臓器への到達と消失

C16 製剤化のサイエンス (1) 製剤材料の性質、(2) 剤形をつくる、(3) DDS (Drug Delivery System:薬物送達システム)

成績評価方法: 各SBO について、問題の演習、解らない箇所の調査、解答の発表を行い、担当者は内容をチェック・フィードバックを行う。演習課題の提出とプレゼンテーションを加味して評価する。

教 科 書: プリントを頒布

オフィスアワー:田野中・高木 いつでも可。 但し、要予約

豊田・大山・内手 いつでも可。 但し、要予約 野水・吉川・保住 いつでも可。 但し、要予約 高島・金沢 いつでも可。 但し、要予約

創薬演習

Review and Exercises in Clinical Applied Pharmacy

卒論教室指導教員 医療薬物薬学科 准教授 **一栁 幸生** 医療薬物薬学科 教 授 田野中浩一 医療薬物薬学科

学習目標 (GIO)

将来の進路は、医療(病院・薬局の薬剤師として)、医薬品販売、研究、創薬、臨床開発、医薬情報担当、学術、特許・知的財産、食品、化学分野など多岐にわたる。医薬品創製は新薬開発の社会的ニーズの調査・探索、探索基礎研究、臨床開発とステージを進んでいく道のりがある。本演習は医薬品創製を包括的に理解することを目的として、各ステージごとに関連する基本的な概説を行い、さらに、最近の話題について論文、総説の探索調査を行い、発表・討論する。

行動目標 (SBOs)

各卒業論文教室で下記の項目より SBOs を設定する

3 医薬品と標的生体分子の相互作用を、具体例を挙げて立体化学的観点から説明できる。 4 立体異性体と生物活性の関係について具体例を挙げて説明できる。 5 医薬品の構造とアゴニスト活性、アンタゴニスト活性との関係について具体例を挙げて説明できる。 6 スクリーニングの対象となる化合物の起源について説明できる。 7 代表的なスクリーニング法を列挙し、概説できる。 8 定量的構造活性相関のパラメーターを列挙し、その薬理活性に及ぼす効果について概説できる。 9 生物学的等価性(パイオアイソスター)の意義について概説できる。 10 薬物動態を考慮したドラッグデザインについて概説できる。 11 組換え体医薬品の特色と有用性を説明できる。 12 代表的な組換え体医薬品を列挙できる。 13 組換え体医薬品の安全性について概説できる。 14 遺伝子治療の原理、方法と手順、現状、および倫理的問題点を概説できる。 15 再生医療の原理、方法と手順、現状、および倫理的問題点を概説できる。 16 ヒトゲノムの構造と多様性を説明できる。 17 パイオインフォマティクスについて概説できる。 18 遺伝子多型(欠損、増幅)の解析に用いられる方法(ゲノミックサザンブロット法など)について概説できる。 18 遺伝子多型(欠損、増幅)の解析に用いられる方法(ゲノミックサザンブロット法など)について概説できる。 19 ゲノム情報の創薬への利用について、創薬ターゲットの探索の代表例(イマチニブなど)を挙げ、ゲノム	1	古典的な医薬品開発から理論的な創薬への歴史について説明できる。
 立体異性体と生物活性の関係について具体例を挙げて説明できる。 医薬品の構造とアゴニスト活性、アンタゴニスト活性との関係について具体例を挙げて説明できる。 スクリーニングの対象となる化合物の起源について説明できる。 代表的なスクリーニング法を列挙し、概説できる。 定量的構造活性相関のパラメーターを列挙し、その薬理活性に及ぼす効果について概説できる。 生物学的等価性 (バイオアイソスター) の意義について概説できる。 業物動態を考慮したドラッグデザインについて概説できる。 組換え体医薬品の特色と有用性を説明できる。 代表的な組換え体医薬品を列挙できる。 組換え体医薬品の安全性について概説できる。 遺伝子治療の原理、方法と手順、現状、および倫理的問題点を概説できる。 声生医療の原理、方法と手順、現状、および倫理的問題点を概説できる。 ドイオインフォマティクスについて概説できる。 バイオインフォマティクスについて概説できる。 遺伝子多型 (欠損、増幅) の解析に用いられる方法 (ゲノミックサザンブロット法など) について概説できる。 ガノム情報の創薬への利用について、創薬ターゲットの探索の代表例 (イマチニブなど) を挙げ、ゲノム 	2	医薬品開発の標的となる代表的な生体分子を列挙できる。
 5 医薬品の構造とアゴニスト活性、アンタゴニスト活性との関係について具体例を挙げて説明できる。 6 スクリーニングの対象となる化合物の起源について説明できる。 7 代表的なスクリーニング法を列挙し、概説できる。 8 定量的構造活性相関のパラメーターを列挙し、その薬理活性に及ぼす効果について概説できる。 9 生物学的等価性 (バイオアイソスター) の意義について概説できる。 10 薬物動態を考慮したドラッグデザインについて概説できる。 11 組換え体医薬品の特色と有用性を説明できる。 12 代表的な組換え体医薬品を列挙できる。 13 組換え体医薬品の安全性について概説できる。 14 遺伝子治療の原理、方法と手順、現状、および倫理的問題点を概説できる。 15 再生医療の原理、方法と手順、現状、および倫理的問題点を概説できる。 16 ヒトゲノムの構造と多様性を説明できる。 17 バイオインフォマティクスについて概説できる。 18 遺伝子多型(欠損、増幅)の解析に用いられる方法(ゲノミックサザンブロット法など)について概説できる。 19 ゲノム情報の創薬への利用について、創薬ターゲットの探索の代表例(イマチニブなど)を挙げ、ゲノム 	3	医薬品と標的生体分子の相互作用を、具体例を挙げて立体化学的観点から説明できる。
 スクリーニングの対象となる化合物の起源について説明できる。 代表的なスクリーニング法を列挙し、概説できる。 定量的構造活性相関のパラメーターを列挙し、その薬理活性に及ぼす効果について概説できる。 生物学的等価性 (パイオアイソスター) の意義について概説できる。 戦物動態を考慮したドラッグデザインについて概説できる。 組換え体医薬品の特色と有用性を説明できる。 代表的な組換え体医薬品を列挙できる。 組換え体医薬品の安全性について概説できる。 遺伝子治療の原理、方法と手順、現状、および倫理的問題点を概説できる。 再生医療の原理、方法と手順、現状、および倫理的問題点を概説できる。 ドイオインフォマティクスについて概説できる。 パイオインフォマティクスについて概説できる。 遺伝子多型(欠損、増幅)の解析に用いられる方法(ゲノミックサザンブロット法など)について概説できる。 プノム情報の創薬への利用について、創薬ターゲットの探索の代表例(イマチニブなど)を挙げ、ゲノム 	4	立体異性体と生物活性の関係について具体例を挙げて説明できる。
7 代表的なスクリーニング法を列挙し、概説できる。 8 定量的構造活性相関のパラメーターを列挙し、その薬理活性に及ぼす効果について概説できる。 9 生物学的等価性 (バイオアイソスター) の意義について概説できる。 10 薬物動態を考慮したドラッグデザインについて概説できる。 11 組換え体医薬品の特色と有用性を説明できる。 12 代表的な組換え体医薬品を列挙できる。 13 組換え体医薬品の安全性について概説できる。 14 遺伝子治療の原理、方法と手順、現状、および倫理的問題点を概説できる。 15 再生医療の原理、方法と手順、現状、および倫理的問題点を概説できる。 16 ヒトゲノムの構造と多様性を説明できる。 17 バイオインフォマティクスについて概説できる。 18 遺伝子多型 (欠損、増幅) の解析に用いられる方法 (ゲノミックサザンブロット法など) について概説できる。 19 ゲノム情報の創薬への利用について、創薬ターゲットの探索の代表例 (イマチニブなど) を挙げ、ゲノム	5	医薬品の構造とアゴニスト活性、アンタゴニスト活性との関係について具体例を挙げて説明できる。
8 定量的構造活性相関のパラメーターを列挙し、その薬理活性に及ぼす効果について概説できる。 9 生物学的等価性(パイオアイソスター)の意義について概説できる。 10 薬物動態を考慮したドラッグデザインについて概説できる。 11 組換え体医薬品の特色と有用性を説明できる。 12 代表的な組換え体医薬品を列挙できる。 13 組換え体医薬品の安全性について概説できる。 14 遺伝子治療の原理、方法と手順、現状、および倫理的問題点を概説できる。 15 再生医療の原理、方法と手順、現状、および倫理的問題点を概説できる。 16 ヒトゲノムの構造と多様性を説明できる。 17 パイオインフォマティクスについて概説できる。 18 遺伝子多型(欠損、増幅)の解析に用いられる方法(ゲノミックサザンブロット法など)について概説できる。 19 ゲノム情報の創薬への利用について、創薬ターゲットの探索の代表例(イマチニブなど)を挙げ、ゲノム	6	スクリーニングの対象となる化合物の起源について説明できる。
9 生物学的等価性 (バイオアイソスター) の意義について概説できる。 10 薬物動態を考慮したドラッグデザインについて概説できる。 11 組換え体医薬品の特色と有用性を説明できる。 12 代表的な組換え体医薬品を列挙できる。 13 組換え体医薬品の安全性について概説できる。 14 遺伝子治療の原理、方法と手順、現状、および倫理的問題点を概説できる。 15 再生医療の原理、方法と手順、現状、および倫理的問題点を概説できる。 16 ヒトゲノムの構造と多様性を説明できる。 17 バイオインフォマティクスについて概説できる。 18 遺伝子多型 (欠損、増幅) の解析に用いられる方法 (ゲノミックサザンブロット法など) について概説できる。 グノム情報の創薬への利用について、創薬ターゲットの探索の代表例 (イマチニブなど) を挙げ、ゲノム	7	代表的なスクリーニング法を列挙し、概説できる。
10 薬物動態を考慮したドラッグデザインについて概説できる。	8	定量的構造活性相関のパラメーターを列挙し、その薬理活性に及ぼす効果について概説できる。
 11 組換え体医薬品の特色と有用性を説明できる。 12 代表的な組換え体医薬品を列挙できる。 13 組換え体医薬品の安全性について概説できる。 14 遺伝子治療の原理、方法と手順、現状、および倫理的問題点を概説できる。 15 再生医療の原理、方法と手順、現状、および倫理的問題点を概説できる。 16 ヒトゲノムの構造と多様性を説明できる。 17 バイオインフォマティクスについて概説できる。 18 遺伝子多型(欠損、増幅)の解析に用いられる方法(ゲノミックサザンブロット法など)について概説できる。 19 ゲノム情報の創薬への利用について、創薬ターゲットの探索の代表例(イマチニブなど)を挙げ、ゲノムに 	9	生物学的等価性(バイオアイソスター)の意義について概説できる。
12 代表的な組換え体医薬品を列挙できる。 13 組換え体医薬品の安全性について概説できる。 14 遺伝子治療の原理、方法と手順、現状、および倫理的問題点を概説できる。 15 再生医療の原理、方法と手順、現状、および倫理的問題点を概説できる。 16 ヒトゲノムの構造と多様性を説明できる。 17 パイオインフォマティクスについて概説できる。 18 遺伝子多型(欠損、増幅)の解析に用いられる方法(ゲノミックサザンブロット法など)について概説できる。 19 ゲノム情報の創薬への利用について、創薬ターゲットの探索の代表例(イマチニブなど)を挙げ、ゲノムに	10	薬物動態を考慮したドラッグデザインについて概説できる。
13 組換え体医薬品の安全性について概説できる。 14 遺伝子治療の原理、方法と手順、現状、および倫理的問題点を概説できる。 15 再生医療の原理、方法と手順、現状、および倫理的問題点を概説できる。 16 ヒトゲノムの構造と多様性を説明できる。 17 パイオインフォマティクスについて概説できる。 18 遺伝子多型(欠損、増幅)の解析に用いられる方法(ゲノミックサザンブロット法など)について概説できる。 19 ゲノム情報の創薬への利用について、創薬ターゲットの探索の代表例(イマチニブなど)を挙げ、ゲノムに	11	組換え体医薬品の特色と有用性を説明できる。
14 遺伝子治療の原理、方法と手順、現状、および倫理的問題点を概説できる。 15 再生医療の原理、方法と手順、現状、および倫理的問題点を概説できる。 16 ヒトゲノムの構造と多様性を説明できる。 17 バイオインフォマティクスについて概説できる。 18 遺伝子多型(欠損、増幅)の解析に用いられる方法(ゲノミックサザンブロット法など)について概説できる。 19 ゲノム情報の創薬への利用について、創薬ターゲットの探索の代表例(イマチニブなど)を挙げ、ゲノムに	12	代表的な組換え体医薬品を列挙できる。
15 再生医療の原理、方法と手順、現状、および倫理的問題点を概説できる。 16 ヒトゲノムの構造と多様性を説明できる。 17 バイオインフォマティクスについて概説できる。 18 遺伝子多型(欠損、増幅)の解析に用いられる方法(ゲノミックサザンブロット法など)について概説できる。 19 ゲノム情報の創薬への利用について、創薬ターゲットの探索の代表例(イマチニブなど)を挙げ、ゲノムは	13	組換え体医薬品の安全性について概説できる。
16 ヒトゲノムの構造と多様性を説明できる。 17 バイオインフォマティクスについて概説できる。 18 遺伝子多型(欠損、増幅)の解析に用いられる方法(ゲノミックサザンブロット法など)について概説できる。 ゲノム情報の創薬への利用について、創薬ターゲットの探索の代表例(イマチニブなど)を挙げ、ゲノムは	14	遺伝子治療の原理、方法と手順、現状、および倫理的問題点を概説できる。
17 バイオインフォマティクスについて概説できる。 18 遺伝子多型(欠損、増幅)の解析に用いられる方法(ゲノミックサザンブロット法など)について概説できる 「クノム情報の創薬への利用について、創薬ターゲットの探索の代表例(イマチニブなど)を挙げ、ゲノムは	15	再生医療の原理、方法と手順、現状、および倫理的問題点を概説できる。
18 遺伝子多型(欠損、増幅)の解析に用いられる方法(ゲノミックサザンブロット法など)について概説できる ゲノム情報の創薬への利用について、創薬ターゲットの探索の代表例(イマチニブなど)を挙げ、ゲノムi	16	ヒトゲノムの構造と多様性を説明できる。
10 ゲノム情報の創薬への利用について、創薬ターゲットの探索の代表例(イマチニブなど)を挙げ、ゲノム	17	バイオインフォマティクスについて概説できる。
10	18	遺伝子多型(欠損、増幅)の解析に用いられる方法(ゲノミックサザンブロット法など)について概説できる。
	19	ゲノム情報の創薬への利用について、創薬ターゲットの探索の代表例(イマチニブなど)を挙げ、ゲノム創薬の流れについて説明できる。
20 代表的な疾患(癌、糖尿病など)関連遺伝子について説明できる。	20	代表的な疾患(癌、糖尿病など)関連遺伝子について説明できる。
21 疾患関連遺伝子情報の薬物療法への応用例を挙げ、概説できる。	21	疾患関連遺伝子情報の薬物療法への応用例を挙げ、概説できる。

Π

授業内容

回数	担 当	内 容	対応 (SBOs)
12	卒論教室指導教員	各教室の特性に合わせた演習テーマを設定し、論文検索・発表資料作成とプレゼンテーションを、スモールグループディスカッションを中心に進める。	

授業で行っている工夫: 教科書等に記載されていない最新情報を随時提供する。

モデル・コアカリ: C17 医薬品の開発と生産 (1) 医薬品開発と生産のながれ、(2) リード化合物の創製と最適化、

キュラムとの関連 (3) バイオ医薬品とゲノム情報

成績評価方法: 形成的評価: 知識: SGDの中で各自に質問した返答についてのフィードバックを行う。

総括的評価:知識:演習内容についての試験あるいは演習の課題の提出、技能:プレゼンテーション、態度:SGDごとに行った形成的評価での改善について各指導教員が指導内容に合わせて総合

的に評価する。

教 書:演習テーマに則したプリントやパワーポイント、関連する学術誌等を適宜用いる。

オフィスアワー: いつでも可。

所属教室:各卒論教室指導教員

特 記 事 項: 卒論教室の職員のみでの実施が難しい場合は、他教室との共同での実施を行う。

高齢者医療

Geriatric Medicine

3 (医療能薬学特論性科目) と併せて単位認定する) 学 年 第4学年 科目分類 修 単 位 必 前期・後期 期 前 医薬品安全管理学教室 教 授 太田 伸 臨床薬剤学教室 教 授 内野 克喜

学習目標 (GIO)

少子超高齢化社会が到来し、医療の対象者は極めて多様になってきた。この特論では、これから益々増加傾向を示し、実践の場で接する可能性の高い、高齢者に的を絞り、生理学・生化学データの特徴、行動の特徴、代表的な疾病と治療法、死生観、医療保険制度、介護保険制度、後期高齢者医療制度などに関する基本的な知識を学ぶ。授業では、感染制御、循環器疾患、在宅医療、緩和ケア、高齢者服薬指導、高齢者薬物療法について学ぶ。高齢者に対する医療を実践できることを目指す。

講師紹介

平田 尚人 長野赤十字病院薬剤師

保科 滋明 信越病院薬剤部長

下枝 貞彦 臨床薬剤学教室

杉浦 宗敏 医薬品安全管理学教室

太田 伸 臨床薬剤学教室

内野 克喜 医薬品安全管理学教室

│ 行動目標 (SBOs)

1	高齢者の医療制度について概説できる。
2	高齢者の生理機能を概説できる。
3	高齢者の薬物療法の特徴を概説できる。
4	感染制御の重要性を概説できる。
5	高齢者の循環器疾患の特徴と治療について概説できる。
6	在宅医療の問題と特徴を概説できる。
7	緩和ケア医療について概説できる。
8	高齢者の服薬指導の重要性を概説できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	太田 伸	オリエンテーション:高齢者医療の概説、感染制御の重要性	2、4
2	下枝 貞彦	高齢者におけるがん薬物療法の実際	2、7、8
3	保科 滋明	地域医療と在宅医療	1, 6
4	杉浦 宗敏	痛みの発生と緩和ケアの重要性	2、7、8
5	平田 尚人	医療高齢者の循環器疾患と治療	2, 5
6	内野 克喜	高齢者の薬物療法	1, 2, 3

授業で行っている工夫: 講義では、グループ学習を取り入れ、SGDを行い発表させる。

モデル・コアカリ: C10、C11、C13、C14、C18

キュラムとの関連

成 績 評価方法:授業の出席、レポート等の提出物のチェック、SGDにおいての積極的な発言を総合評価する。

オフィスアワー:太田 伸 いつでも可 臨床薬剤学教室 ただし、予約すること。

特 記 事 項:外部講師に対しての挨拶等の礼儀ができるか。態度についても学んでもらう。

教員からの一言: 第一線で活躍している薬剤師の先生の講義を聴くことによって、将来薬剤師として活躍できる秘

訣を学ぶことができる。

 \blacksquare

VIII

比端香粧品科学

Frontiers in Cosmetic Sciences

学 年 第4学年 科目分類 必 修 前期・後期 前 期 単 位

3 (医療性薬学特論性相) と併せて単位認定する)

北村 謙始 非常勤講師

学習目標 (GIO)

香粧品(化粧品)は、健常人の日常生活と深くかかわりあい、様々な目的に使用されている。化 粧品(薬用化粧品といわれる医薬部外品を含む)の定義、使用目的、役割および化粧品開発に関 わる科学的基礎および技術概要については「香粧品科学(選択)」で解説した。本講では、化粧品 の科学的理解を深めることを目的に、化粧品に関わる先端の研究開発の事例を解説する。また、 実際の研究開発に必要な創造性、研究アイデアの一端を理解するため、研究開発事例を基に解説 する。さらに、講義では解説に加え、実際の原料、製剤に触れる機会を通して技術理解の促進を 図る。

講師紹介

北村 謙始 株式会社資生堂 スキンケア研究開発センター

行動目標 (SBOs)

1	化粧品の本質の理解を深める(定義および科学的理解)
2	皮膚の構造と基本機能、細胞と機能を理解する
3	化粧品を支える技術要素の多様性を理解する
4	化粧品と薬学との関わりについての理解を深める
5	最近の製品および成分・原料開発の実際を理解する

授業内容

回数	担当	内 容	対応 (SBOs)
1	北村	化粧品概要(復習):定義、種類、特性	1
2	//	皮膚科学の基礎:皮膚の構造と機能	1, 2
3	//	成分開発とその応用(1): スキンケア製品	2、3、4、5
4	//	成分開発とその応用(2): メーキャップ製品	2、3、4、5
5	//	化粧品の機能進化:皮膚生理研究と成分の応用(1)	3、4、5
6	//	化粧品の機能進化:皮膚生理研究と成分の応用(2)	3、4、5
7	//	化粧品の技術開発発想:研究開発の課題設定と発想の具現化(1)	3、5
8	//	化粧品の技術開発発想:研究開発の課題設定と発想の具現化(2)	3、5
9	//	先端皮膚生理研究:美容上の悩みトレンドに挑戦(1)	3、5
10	//	先端皮膚生理研究:美容上の悩みトレンドに挑戦(2)	3、5
11	//	乳化技術の体験と使用性考察(1)	3、4、5
12	//	乳化技術の体験と使用性考察(2)	3、4、5
13	//	化粧品の科学的理解:講義のまとめ	1, 2, 3, 4, 5

授業で行っている工夫: · 教科書を基本教材とするが講義を補完するレジメを準備。

- ・化粧品成分、製剤に触れる機会の提供。
- ・講義資料は教科書を基に図、動画を組み込み理解の促進を図る。
- ・先端技術についてはその内容とともに実際の研究開発プロセスも含め解説

成績評価方法: 講義内容を基に複数回課題レポートを課す。授業でも課題に関する解説をするが、理解度を判定 するため試験を実施する。

科 書:新化粧品学(第2版)光井武夫編(南山堂) 教

書: 化粧品の有用性: 日本化粧品技術者会編(薬事日報社)

化粧品事典:日本化粧品技術者会編(丸善)

オフィスアワー: 北村 講義日 13:00 ~講義時間終了頃 講師控室

記事項:講義スケジュールの中で、2コマ連続する日程についてはそのメリットを活かし、課題演習も組

み込む。講義日程を踏まえ、講義内容は前後することもある。

IX

Reading and Writing Comprehension of Scientific Papers

年 第4学年 科目分類 必 前期・後期 期 単 位 前

卒論指導教員

学習目標 (GIO)

薬剤師は急速に進歩する医療に常に対応する能力が求められる。今まさに知識として学んでいる 内容や制度があっという間に陳腐化し、あるいは誤りになる可能性すらある。薬学生は常に変化 の中に身を置いているという認識を持ち、有用な最新の情報を効率良く身につける能力が求めら れる。また、本学科で学ぶべき領域(難治性疾患、セルフメディケーションなど)はインターネッ ト等における曖昧な情報・誤った情報の宝庫ともいえる。本学科生は情報の質を見分ける能力を 身につけ、自らが風評に左右されることなく、また風評被害の加害者にならない能力が求められる。 この特論では、医療衛生薬学に関する基本的な情報を自ら習得する能力を醸成するために、本分 野に関連した原著論文や総説を書籍、雑誌、PubMedなどを駆使して丹念に検索・調査し、翻訳・ 要約し、発表・討議する。

行動目標 (SBOs)

1	原著論文を読むことができる。
2	原著論文の抄録を作成することができる。
3	和文ならびに欧文の総説を読むことができる。
4	原著やデータをもとに、討論できる。
5	原著やデータをもとに、発表ができる。

授業内容

演習スケジュールは、年度初めに作成される授業予定表をもとに、各卒論指導教員が定める、

授業で行っている工夫: 自己主導型学習の態度が身につくよう、フィードバックを繰り返しながら行う。課題研究を行う ための大切なステップの一つと位置づけられるものであり、個性を尊重している。

モデル・コアカリ: A 全学年を通して(1)生と死、(2)医療の担い手としてのこころ構え、(3)信頼関係の確立 キュラムとの関連 を目指して

E1 総合薬学研究 (1) 研究活動に求められる態度、(2) 研究活動を学ぶ

E2 総合薬学演習

成績評価方法: 演習への参加態度、提出物ならびに発表態度などを総合的に判断して評価する。

書:各卒論配属先で指定する。

教員からの一言: 学問の成り立ちを知る重要なステップです。教科書の一行一行が先人たちのどのような努力で実 ったものなのか、その背景には何があるのか。じっくり時間をかけて一文一文を丹念に読み解い ていただきたい。

セルフメディケーション:薬剤師の関わり

The Role of the Pharmacist in Self-medication

学 在 第4学年

科目分類 必修 薬学教育推進センター 前期・後期 前 期 袴田

准教授

3 (医療性薬学)潤 [他科) 単 位

分析化学教室

加藤 哲太 教 授 准教授 早川磨紀男

衛生化学教室

秀樹 講師 安藤 堅 衛生化学教室

舗 横須賀章人 漢方資源応用学教室

学習目標 (GIO)

生活習慣病に係る医療費が財政に大きな負担を与えている背景から、国では「21世紀における 国民健康づくり運動(健康日本21) を策定し、国民自らが健康増進に努め、こうした病を予防 しようとする考え方、すなわち「セルフメディケーション」を推進している。本演習では、一般 用医薬品(OTC薬)(漢方薬も含む)、保健機能を有する食品、健康状態を知るための分析技術な どの視点から、「セルフメディケーション」への薬剤師の関わり方についての知識・態度を修得する。

▋行動目標 (SBOs)

テーマ 1:一般用医薬品(漢方薬を含む)を中心としたセルフメディケーションの提案

1	セルフメディケーションに用いる一般用医薬品(漢方薬を含む)を列挙できる。
2	セルフメディケーションに用いる特定保健用食品、栄養機能食品を列挙できる。
3	頭痛を訴えてきた顧客(患者)に対して、適切な一般用医薬品(漢方薬を含む)が選択でき、情報提供ができる。
4	腹痛を訴えてきた顧客(患者)に対して、適切な一般用医薬品(漢方薬を含む)が選択でき、情報提供ができる。
5	不眠を訴えてきた顧客(患者)に対して、適切な一般用医薬品(漢方薬を含む)が選択でき、情報提供ができる。
6	症状から判断して、適切な受診勧奨ができる。

テーマ2:保健機能を有する食品の有用性とリスク管理の必要性

1	保健機能を有する食品として市販されている「保健機能食品」、「特定保健用食品」、「栄養機能食品」、「健康補助食品」などについて、法律上の定義の有無、市場での販売の実態を説明することができる。
2	メタボリックシンドローム、生活習慣病などの予防に役立つ可能性のある特定保健用食品として、どのような商品が市販されているかを調査し、説明することができる。
3	身近な薬局で、どのような保健機能食品、栄養補助食品、いわゆる「健康食品」が市販されているかを調査し、
	それらの商品のリスク管理に対して薬剤師が果たす役割について討議できる。
1	いわゆる「健康食品」が健康被害を引き起こした事例を調査し、原因について調査することにより、リスク管
4	理の実態と問題点について討議できる。
E	食品成分と医薬品との相互作用の事例を調査することにより、リスクを回避するために必要な注意点を説明で

ナーマ3.で	2ルノメディケーションの16めの間易計測
1	イムノクロマトグラフィーを利用した妊娠検査薬の検査原理を説明できる。
2	イムノクロマトグラフィーを利用した排卵日検査薬の検査原理を説明できる。
3	半導体センサを利用した呼気中アルコールセンサーの測定原理を説明できる。
4	酵素反応と電流計測を利用した血糖値測定装置の測定原理を説明できる。
5	酵素反応と吸光測定を利用した血糖値測定装置の測定原理を説明できる。
6	酵素反応と電流計測を利用した血中乳酸測定装置の測定原理を説明できる。
7	発色反応を利用した尿検査試験紙による尿糖及び尿蛋白の検査原理を説明できる。
8	赤色光及び赤外線LEDを利用した経皮的動脈血酸素飽和度測定器の測定原理を説明できる。
9	圧電素子又は水銀柱を利用した血圧計の測定原理を説明できる。

きる。

テーマ4:0	TC薬の選択と指導
1	症状に関連する生体の構造、機能を説明できる。
2	病態メカニズムが説明できる。
3	薬の作用について説明できる。
4	症状からOTC薬適応か受診勧奨かを鑑別できる。
5	OTC薬の服薬指導ができる。
6	薬の選択以外に生活習慣などの観点からアドバイスができる。

授業内容

回数	担 当	内 容	対応(SBOs)
1~14 (テーマ1)	漢方資源応用学教室	1~3) 頭痛の症例に対して、グループごとに調査・検討・発表し、開局薬剤師から指導、講義を受ける。 4~6) 腹痛の症例に対して、グループごとに調査・検討・発表し、開局薬剤師から指導、講義を受ける。 7~9) 不眠の症例に対して、グループごとに調査・検討・発表し、開局薬剤師から指導、講義を受ける。 10~12) セルフメディケーションに対する薬剤師の役割について、グループごとに調査・検討・発表し、開局薬剤師から指導、講義を受ける。 13、14) 一般用医薬品(漢方薬を含む)を中心としたセルフメディケーションの提案について、まとめと総合討論	テーマ1 - 1、 2、3、4、5、6
1 ~ 14 (7−₹2)	衛生化学教室	1 ~ 2) 現場薬剤師の経験談を含めた導入講義 3 ~ 5) 現場薬局を訪問するにあたってのプレ教育(グループ学習) 6 ~ 11) 現場薬局の訪問と「健康食品」による健康被害に関する調査 12 ~ 14) 調査の報告(グループ学習)	テーマ2 - 1、 2、3、4、5
1~14 (テーマ3)	分析化学教室	1) 概要説明 2~3) 計測目的の調査 4) 調査結果発表(プレゼンテーション) 5~7) 計測原理の調査 8) 調査結果発表(プレゼンテーション) 9) 「薬局における簡易計測」についての講義 10~11) 簡易計測(実習) 12) 計測結果発表(プレゼンテーション) 13~15) 簡易計測法紹介ブース(実習)	テーマ3 - 1、 2、3、4、5、 6、7、8、9
1 ~ 14 (7 −₹4)	薬学教育推進センター	1 ~ 2) 現場薬剤師の経験談とレポート 3 ~ 5) 症例検討、同一症例について各個人で検討 6 ~ 7) 疾患の原因、薬の作用メカニズム調査(グループ学習) 8 ~ 10) 症例検討(グループ学習) 11、12) ブレゼンテーション準備と確認 13、14) ブレゼンテーション、総合討論	テーマ4-1、 2、3、4、 5、6

授業で行っている工夫: スモールグループディスカッションを中心に参加型演習、授業をすすめる。プレゼンテーション 学習も積極的にとり入れる

成 績 評 価 方 法:1) 形成的評価 a) 知識:調査した内容をパワーポイント等にまとめる。

- b) 技能:プレゼンテーション、調査報告等をグループ学習で行い、フィードバックを繰り返す。
- c) 態度:接遇、相談応需、調査報告を行い、その態度を終了時にフィードバックする。
- 2) 総括的評価 a) 知識: セルフメディケーションに関する情報を正しく伝えられることをレポートなどから評価する。
 - b) 技能:プレゼンテーション用に作成したPP、相談応需の仕方などから評価 する。
 - c) 態度:出席、SGDや実技における発言や態度から評価する。

オフィスアワー: 三巻 祥浩 要予約 漢方資源応用学教室 研究2号館4階408教授室

楠 文代 要予約 分析化学教室 早川磨紀男 要予約 衛生化学教室

加藤 哲太 要予約 薬学教育推進センター

IX

臨床応用薬学への課題研究チュートリアル

Interactive Tutorial Training for Clinically Applied Pharmaceutical Sciences

学	年	第4号	学年	科目分類 必 修		前	期・征		期	単位	3 (医療性薬学解 1 他科) と 目と 性で 単位認定する)
教	授	新槇	幸彦	薬物送達学教室		教	授	立川	英一	内分泌・神経薬	薬理学教室
教	授	林 .	良雄	薬品化学教室		教	授	横松	カ	分子機能解析等	学教室
准教	负授	田村	和広	内分泌·神経薬理学教	室	准教	效授	根岸	洋一	薬物送達学教室	室
講	師	青山	洋史	分子機能解析学教室		助	教	薬師も	宇文華	薬品化学教室	
助	教	吉江	幹浩	内分泌·神経薬理学教	室	助	教	沓掛	真彦	内分泌・神経薬	薬理学教室
助	手	髙橋	葉子	薬物送達学教室		助	手	山崎	有理	薬物化学教室	

(GIO)

学科の理念ならびに特論 I (高齢者医療)に示したとおり、少子高齢者社会を迎え、慢性・難治 性疾患は著しく増加している。特論 I で得た知識を基に、これらの疾患に対する薬学的アプロー チ法や薬剤師の関わりについての考え方や技能を高めるために、本演習では医療衛生薬学科の各 研究室において課された課題研究テーマ等を題材にインターラクティブなチュートリアルトレー ニングを実施する。課題研究に対する調査·研究に基づいた資料を作成し、個別指導教員(チュー ター)との討議を通じ、課題となるテーマを解決するための理論的かつ応用可能な発展的展開が できる能力を身につける。

講師紹介

幸彦 薬物送達学教室 英一 内分泌·神経薬理学教室 立川 林 良雄 薬品化学教室

横松 分子機能解析学教室 力 和広 田村 内分泌·神経薬理学教室 薬物送達学教室 根岸 洋一 洋史 分子機能解析学教室 青山 薬師寺文華 薬品化学教室

内分泌·神経薬理学教室 吉江 幹浩 真彦 内分泌·神経薬理学教室 沓掛 葉子 薬物送達学教室 髙橋 有理 薬品化学教室 山崎

▮行動目標 (SBOs)

学生は、臨床応用薬学に関する下記4領域から一つの分野を選択後、課題設定を行い、領域を担当するチューターとの個別 討議を通じて、学習目標の達成をめざす。尚、領域の選択においては過不足が生じないように人数調整を実施する。

《領域》

- 医療および生物薬剤学に関する領域 (新槇、根岸、高橋) (1)
- 医療および薬物の生物活性に関する領域 (立川、田村、沓掛)
- 医療および細胞情報伝達系に関わる創薬科学に関する領域(横松、青山)
- ④ 医療およびペプチド・蛋白質関連の創薬科学に関する領域(林、薬師寺、山崎)

具体的な行動目標

- 医療衛生薬学科あるいは研究室において課された活動から課題研究を設定できる。
- 課題研究の目的を説明できる。
- 3. 課題研究を実施できる。
- 4. 課題研究の進捗について資料を作成し、適切に説明できる。
- 5. 課題研究の進捗を踏まえ、課題における問題点を説明できる。
- 6. 課題研究に関して討議できる。
- 7. 課題研究に関する今後の展開を立案できる

 $\mathbb{V} \underline{\mathbb{I}}$

授業内容

回数	担 当	内 容	対応 (SBOs)
1	新順 幸彦 立川 英一 林 良雄 横松 力	趣旨説明、領域の設定	1
2~3	領域毎担当	課題設定およびチュートリアル	1
4~7	新槇 幸彦 立川 英一 林 良雄 横松 力	領域講話(話題提供)	1~5
8~12	領域毎担当	課題活動(必要に応じて随時チュートリアルを実施)	1~5
13	//	チュートリアル	1~5
14	//	課題報告会	1~5

成 績 評 価 方 法 : 出席、レポート、チュートリアルおよび発表時などの参加態度によって、総合的に判断する。 オフィスアワー : いつでも可

VIII

薬剤師の職能と自己将来展望

The Professional Skills of Pharmacists and Your Future

3 (医療性薬学演習 I 他科) 日と併せて単位認定する) 学 在 第4学年 科目分類 前期・後期 必修 前 期 単 位

生化学・分子生物学教室 准教授 佐藤 隆 准教授 安達 禎之 免疫学教室

講 師 平野 和也 環境生体応答学教室

学習目標 (GIO)

医療衛生薬学科の学生は、その理念から研究、医療、保健・衛生、行政、食品、香粧品分野など 多様な職業分野において活躍が期待される。6年制教育の中で自分が希望する将来の進路を考え る機会を与え、その具現化に向けた方略とモチベーションを得るために、各分野で活躍の卒業生 を中心とした講師の方々の講演を通じて、その分野の現状と将来展望、必要とされる知識、技能、 態度、準備期間などを知り、各自必要な情報を収集し、「進路活動プラン」を立案する。また、実 際に進路活動において想定される「適性検査」、「自己PR作成」、「面接」などを模擬体験して、 現時点における希望進路への準備到達度を把握する。

講師紹介

伊東 晃

大野 尚仁

別府 正敏

土屋 明美

降 佐藤

平野 和也

安達 禎之

森本 信子

與那 正栄

三浦 典子

Eric M. Skier

安藤 堅

今田 啓介

横須賀章人

高橋 葉子

三木 雄一

沓掛 真彦

秋元 賀子

▋行動目標 (SBOs)

1	職業分野ごとの情報をインターネットや情報誌などから収集し、纏めることができる。
2	職業分野ごとに求められる知識、技能、態度について概説できる。
3	中・長期的な「進路活動プラン」の具体的立案ができる。
4	「自己PR(長所・短所などを含)」を纏めることができる。
5	進路希望について、自分の考えを口頭で説明することができる。
6	医療の担い手として、社会のニーズに常に目を向ける。(態度)
7	医療の担い手にふさわしい態度を示す。(態度)
8	医療の担い手として、生涯にわたって自ら学習する大切さを認識する。(態度)
9	薬剤師の活動分野(医療機関、製薬企業、衛生行政など)について概説できる。
10	薬剤師と共に働く医療チームの職種を挙げ、その仕事を概説できる。

XI

11	医薬品の適正使用における薬剤師の役割について概説できる。
12	医薬品の創製における薬剤師の役割について概説できる。
13	疾病の予防および健康管理における薬剤師の役割について概説できる。
14	医薬品シーズ探索から非臨床試験、臨床試験、承認許可までの新薬創製過程を見聞し、その重要性について 自分の意見をまとめ、発表する。(知識・態度)
15	体験した業務を基にして、理想とする企業勤務者の姿について討議する。(態度)

授業内容

回数	担 当	内 容	対応 (SBOs)
1~2	生化学·分子生物学、 環境生体応答学、 免疫学	授業概要説明、「進路活動プラン」の作成	1, 3, 9~13
3~5	//	職業分野別講演事前準備:質問項目の作成、提出 職業分野別講演①:外部講師による講演、質疑応答(講演後 の感想文の作成・提出)	1、2、14、15
6~8	//	職業分野別講演事前準備:質問項目の作成、提出 職業分野別講演②:外部講師による講演、質疑応答(講演後 の感想文の作成・提出)	1、2、14、15
9~11	//	「進路活動プラン」の再考 「自己PR」の作成、提出 適性検査の実施 模擬面接に向けた準備学習	1~4、9~13
12~14	医療衛生薬学科教員	模擬面接 適性検査の結果、模擬面接を踏まえての「進路活動プラン」 の再考、評価、授業感想の作成・提出	5~8、14、15

授業で行っている工夫: 医療人として活躍するための自分の進路を考えさせる場を、4年次カリキュラムの中に取り入れ る工夫をした。

> 「進路活動プラン」や「自己PR」の作成、外部講師を招いての講演および事前質問事項の準備を 通じて、多岐な職業分野の情報収集および整理、選択、さらに自己PR能力を養えるような工夫 をしている。

適性検査や模擬面接の実施により、自己適性能力および面接力の把握ができるようにしている。

モデル・コアカリ: A ヒューマニズムについて学ぶ (2) 医療の担い手としてのこころ構え、(3) 信頼関係の確立 キュラムとの関連 を目指して

- B イントロダクション (1) 薬学への招待
- G 薬学アドバンスト教育ガイドライン (7) 企業インターンシップ
- 成 績 評 価 方 法: 1) 形成的評価 a) 知識:講演、SGDを通して修得した知識を活動プランや感想(レポート形式) にて纏めてポートフォーリオを作成する。
 - b) 技能: 学生による活動プランや自己PRを通してそれらの実践的な書き方に ついてこまめにフィードバックする。また、能力適性検査(Webテスト)の 活用方法を修得する。
 - c)態度:毎回の個別出席確認によりこまめにフィードバックする。また、Web テストにより自己能力適性を認識する。
 - 2) 総括的評価 a) 知識:授業態度(出席状況等)、進路活動プラン、自己PR票や感想文を纏め たポートフォーリオ、模擬面接評価によって総合的に評価する。
 - c) 態度:模擬面接を実施する。

教 科 書: プリント

オフィスアワー: 佐藤 原則的にいつでも可。但し、要事前連絡。 研究2号棟6階

平野 原則的にいつでも可。但し、要事前連絡。 研究1号棟4階 安達 原則的にいつでも可。但し、要事前連絡。 研究2号棟5階

科別英語特論 English (Topics)

学年 第**4学年** 科目分類 必修 前期·後期 前期 単位 1

卒論指導職員

学習目標 (GIO)

国際化が進む昨今の国内環境において、薬剤師も、国際的感覚を備え持つことが要求される。英文学術誌や雑誌、英字新聞等の読解により科学英語の知識習得は勿論のこと、国際的視野に立った幅広い見識を身に付けていく。各卒論教室にて英語による討論や発表等による演習形式で実施する。

行動目標 (SBOs)

将来、医療現場や学術会議、さらには企業においては海外でも折衝等で必要とされる実用的且つ実践的な英語力を身に付ける。

授業で行っている工夫: 各卒論教室の専門性と特色を生かしたプログラムを基に、グループ学習(討論・発表)を中心に行う。

成 績 評 価 方 法: 1) 形成的評価 a) 知識:輪読等を繰り返し、内容の把握度をチェックする。

2) 総括的評価 a) 知識:レポート提出などにより英語対応力、内容理解力等を総合的に評価する。

c) 態度:出席、取り組み姿勢等から評価する。

年

総合化学演習 Comprehensive Seminar in Chemistry

必修

教授 田口 武夫 医療薬学科 医療薬物薬学科

科目分類

教授林 良雄 医療衛生薬学科

第4学年

学習目標 (GIO)

医薬品化学 II に引き続いて有機化学の知識をさらに深めて、医薬品の構造と性質、合成法を中心に講義する。ペリ環状反応や転位反応および医薬品合成例を取り上げて比較的簡単なターゲット分子合成のための論理的なアプローチができることを目標とする。さらに、これまでに学んだ有機化学について総合的な復習を盛り込み知識を確実なものにする。

前期・後期

前

単 位

0.5

▋行動目標 (SBOs)

1	ペリ環状反応のうちDiels – Alder反応の特徴について具体例を挙げて説明できる。
2	転位反応を用いた代表的な炭素骨格の構築法について具体例を挙げて説明できる。
3	転位反応を用いた代表的な官能基変換反応について具体例を挙げて説明できる。
4	医薬品や生体関連分子に含まれる複素環化合物の性質と反応性について説明できる。
5	代表的な有機反応(炭素-炭素結合形成反応)について概説できる。
6	ターゲット分子(フェニルブタゾン、硫酸グアネチジン、プロスタグランジンなど)への論理的なアプロー チが立案できる。

授業内容

回数	担当	内 容	対応 (SBOs)
1, 2	田口、林	ペリ環状反応 (反応例と特徴)	1, 6
3~5	//	転位反応と医薬品合成への応用例	2, 3, 6
6、7	//	総合演習	4、5、6

授業で行っている工夫:要点および演習課題を盛り込んだプリントを配布。特に、これまでの有機化学の基礎から医薬品 化学までについての演習課題を駆使して、学生の理解を深めることに務める。

モデル・コアカリ: 主として、C5ターゲット分子の合成に挙げられている内容を含む。

キュラムとの関連

成績評価方法: 出席および試験成績による評価。

教 科 書:有機医薬品合成化学(樹林、田口、長坂編 広川書店)

参 考 書:マクマリー有機化学

演習課題を含むプリント配布

オフィスアワー: 田口 武夫 原則いつでも可。事前連絡が望ましい。 教授室

林 良雄 原則いつでも可。事前連絡が望ましい。 教授室

所属教室:田口武夫有機合成化学教室研究2号館3階304

林 良雄 薬品化学教室 研究2号館3階305

IX

総合生物演習

Comprehensive Seminar in Biological Science

 学年
 第4学年
 科目分類
 必修
 前期·後期
 前期
 単位
 0.5

教 授 林 正弘 医療薬物薬学科·医療衛生薬学科

准教授 富田 幹雄 医療薬学科

学習目標(GIO)

既に2年後期の生物薬剤学で、薬物の吸収・分布・代謝・排泄(ADME)の各過程、および薬物速度論に関する基本的知識が講義されている。本講義では薬物速度論の応用的知識を習得し、薬物の生体内運命をさらに深く理解し、有効で安全安心な新薬開発研究や薬物療法に対する生物薬剤学の重要性を学んで欲しい。

▋行動目標 (SBOs)

1	薬物動態に関わる代表的なパラメーターを列挙し、概説できる。
2	線形 1―コンパートメントモデルを説明し、これに基づいた計算ができる。
3	線形 2―コンパートメントモデルを説明し、これに基づいた計算ができる。
4	生物学的半減期を説明し、計算できる。
5	線形性と非線形性の違い、さらに非線形性を示す薬物動態について具体例を挙げて説明できる。
6	組織クリアランス、固有クリアランス、全身クリアランスについて説明し、計算できる。
7	肝および腎クリアランスについて説明できる。
8	モデルによらない薬物動態の解析法を列挙し、説明できる。
9	薬物の生物学的利用能の意味とその計算法を説明できる。
10	初回通過効果について説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	医療薬学科 富田 医療薬物薬学科 林、 医療衛生薬学科 林	コンパートメントモデル(2年のときの復習)	1、2、3、4
2	//	生理学的モデル、組織クリアランス、固有クリアランス	5、6、7
3	//	全身クリアランス、肝および腎クリアランス	6、7
4	//	線形モデルと非線形モデル	5, 8
5	//	モデル非依存的方法(MRT)、生物学的利用能(バイオアベイラビリティ)の定義	8, 9
6	//	生物学的利用能(バイオアベイラビリティ)の計算、初回通 過効果	9、10
7	//	総まとめ(演習問題)	1 ~ 10

授業で行っている工夫: 2年後期に速度論基礎編が終了しているが、将来の医療や創薬の現場に臨むには、さらにその応

用編を学ぶ必要がある。そのためには、応用例を挙げ、練習問題を解きながら、問題解決能力の

醸成に努める。

モデル・コアカリ: C13 薬の効くプロセス(4)薬物の臓器への到達と消失、(5)薬物動態の解析

キュラムとの関連

成 績 評 価 方 法: 1) 形成的評価 a) 知識:練習問題を出題し、それを解くことにより基本的知識を学ぶ。

b) 技能:基本的知識特に計算方法を繰り返し学ぶ。 c) 態度:受講態度(出席状況等)により評価する。

2) 総括的評価 a) 知識: 定期試験により評価する。

c) 態度:受講態度(出席状況など)により評価する。

教 科 書:「最新薬剤学」第9版(廣川書店)

考書:「生物薬剤学」改訂第2版(南江堂)

オフィスアワー: 林 正弘 在室のときにはいつでも可。

富田幹雄 在室のときにはいつでも可。

所属教室:林正弘薬物動態制御学教室研究棟1号館3階

富田幹雄 薬物動態制御学教室 研究棟 1 号館 3 階

教員からの一言:講義は毎回、計算式を用いて理論を展開することが中心となる。疑問点はそのまま放置せずに、

練習問題を解くことにより、解決してください。

総合創薬演習 Comprehensive Seminar in Drug Discovery

年 第4学年 必 修 期 単 位 科目分類 前期・後期 前 0.5 医療薬学科 教 授 古田 降 准教授 柴崎 浩美 医療衛牛薬学科

助 教 横川 彰朋 医療薬物薬学科

学習目標 (GIO)

安全で有効な薬物療法を実施するためには、科学的根拠(Evidence-Based Medicine)に基づいて、各患者に適した薬物を選択し、適正な投与量・投与法を提供することが大切である。本講義では、個々の患者の病状や背景を考慮し、個別的かつ合理的な薬物療法を行うために、薬物治療モニタリング(TDM)の意義、TDMの対象薬物と臨床薬物動態学、薬物相互作用の回避、薬物動態の予測など、薬物療法の基本について習得する。

▋行動目標 (SBOs)

1	血中薬物濃度モニタリング(TDM)の意義を説明できる。
2	血液試料の採取法と薬物の血中濃度測定法を説明できる。
3	TDMが必要とされる代表的な薬物の投与計画について説明できる。
4	至適血中濃度を維持するための投与計画について薬物動態学的パラメーターを用いて説明できる。
5	代表的な薬物相互作用と投与計画について説明できる。
6	疾患時における代表的な薬物の投与計画について説明ができる。
7	ポピュレーションファーマコキネティクスの概念と代表的な応用例について説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	古田、柴崎、横川	TDMの実際 1:TDMの意義、対象薬物、測定法と採血および 試料の取り扱い	1, 2
2	//	TDMの実際2:抗てんかん薬、喘息治療薬、抗生物質、免疫抑制薬等のTDM	3
3~5	//	投与計画 1:点滴静注、繰り返し投与における投与設計、定常 状態の血中濃度予測	3、4
6	//	投与計画2:薬物相互作用、疾患時における投与設計	5, 6
7	//	投与計画3:ポピュレーションファーマコキネティクスの概念 と症例	4、7

授業で行っている工夫: 教科書の確認問題や投与設計の例題・課題を用い、問題解決能力を養う。

学会・学術論文および医療現場における最新情報を紹介して、実務実習に対応できるようにする。

モデル・コアカリ: C13 薬の効くプロセス (5) 薬物動態の解析

キュラムとの関連 C15 薬物治療に役立つ情報 (3) テーラーメイド薬物治療を目指して

成績評価方法:1)形成的評価 a)知識:宿題、あるいは講義時間内のテストの結果を評価する。

2) 総括的評価 a) 知識:出席、宿題、あるいは講義時間内のテスト、定期試験の結果を総合的に評価し、成績評価60%以上を合格とする。出席不良者は受験停止とすることがある。

教 科 書:テーラーメイド医療 -薬物治療の個別化-(古田、柴崎、横川 著、京都廣川書店)

参考書: 臨床薬物動態学 (加藤隆一著 南江堂)、今日の治療薬(南江堂)

オフィスアワー: 古田 前期 毎週火曜日 14:00~17:00 臨床薬学教室 医療薬学研究棟2階

柴崎 前期 毎週火曜日 $14:00\sim17:00$ 臨床薬学教室 医療薬学研究棟 18 横川 前期 毎週火曜日 $14:00\sim17:00$ 臨床薬学教室 医療薬学研究棟 18

所属教室:古田隆臨床薬学教室医療薬学研究棟2120号室

柴崎浩美 臨床薬学教室 医療薬学研究棟 2110号室 横川彰朋 臨床薬学教室 医療薬学研究棟 2110号室

教員からの一言: 講義内容の復習・理解のために、教科書に掲載した各項のまとめ、確認問題、例題、課題を活用 して下さい。 総合物理演習 Comprehensive Seminar in Physical Chemistry

学 年 第**4**学年 科目分類 必 修 前期·後期 後 期 単 位 0.5

教授 加藤 哲太

学習目標 (GIO) コアカリキュラム $C1\sim C7$ について、 $1\sim 3$ 年次に修得した基礎知識を総合的に理解し、これらに関する問題を解決する能力を養う。

行動目標 (SBOs) コアカリキュラム $C1\sim C7$ について、 $1\sim 3$ 年次の講義内容に基づいて作成された問題に解答、解説を加えることにより、CBTに対応できる能力を養う

授業で行っている工夫:提示された問題について、個人あるいはクループ学習により、解説を加え、問題対応能力を高める。

E-learningによる学習を加え、問題対応能力を高める。

成績評価方法: 1) 形成的評価 a) 知識:チェックテスト、低得点者の再テスト、レポート提出などを繰り返す。

2) 総括的評価 a) 知識:総合演習試験を行い、各自の到達度を評価する。

総合演習

総合衛生演習 Comprehensive Seminar in Health Science

 学年
 第4学年
 科目分類
 必修
 前期·後期
 後期
 単位
 0.5

教授 加藤 哲太

学習目標(GIO)

コアカリキュラム $C8 \sim C12$ について、 $1 \sim 3$ 年次に修得した基礎知識を総合的に理解し、これらに関する問題を解決する能力を養う。

行動目標 (SBOs) コアカリキュラム $C8 \sim C12$ について、 $1 \sim 3$ 年次の講義内容に基づいて作成された問題に解答、解説を加えることにより、CBT に対応できる能力を養う。

授業で行っている工夫:提示された問題について、個人あるいはクループ学習により、解説を加え、問題対応能力を高める。

E-learningによる学習を加え、問題対応能力を高める。

成 績 評 価 方 法: 1) 形成的評価 a) 知識:出題範囲を決めチェックテスト、低得点者の再テスト、レポート提出などを繰り返す

2) 総括的評価 a) 知識:総合演習試験を行い、各自の到達度を評価する。

哲太

科目分類

必

Comprehensive Seminar in Drugs and Diseases

単 位

0.5

学 在 第4学年 加藤

学習目標 (GIO)

教 授

> コアカリキュラムC13~C15について、1~3年次に修得した基礎知識を総合的に理解し、こ れらに関する問題を解決する能力を養う。

後 期

前期・後期

行動目標 (SBOs)

コアカリキュラムC13~C15について、1~3年次の講義内容に基づいて作成された問題に解 答、解説を加えることにより、CBTに対応できる能力を養う。

授業で行っている工夫:提示された問題について、個人あるいはグループ学習により、解説を加え、問題対応能力を高める。 E-learningによる学習を加え、問題対応能力を高める。

成 績 評 価 方 法: 1) 形成的評価 a) 知識: 出題範囲を決めチェックテスト、低得点者の再テスト、レポート提出 などを繰り返す。

2) 総括的評価 a) 知識:総合演習試験を行い、各自の到達度を評価する。

Comprehensive Seminar in Pharmaceutical Affairs Laws

第4学年 科日分類 必 修 前期・後期後 期 単 位 0.5

教 授 加藤 哲太

(GIO)

コアカリキュラムA、B、C16~C18について、1~3年次に修得した基礎知識を総合的に理解し、 これらに関する問題を解決する能力を養う。

行動目標 (SBOs)

コアカリキュラムA、B、C16 \sim C18について、1 \sim 3年次の講義内容に基づいて作成された 問題に解答、解説を加えることにより、CBTに対応できる能力を養う。

授業で行っている工夫:提示された問題について、個人あるいはグループ学習により、解説を加え、問題対応能力を高める。

E-learningによる学習を加え、問題対応能力を高める。

成績評価方法:1)形成的評価 a)知識:出題範囲を決めチェックテスト、低得点者の再テスト、レポート提出 などを繰り返す。

2) 総括的評価 a) 知識:総合演習試験を行い、各自の到達度を評価する。

V 5年次 必修科目

4/10		-21	_
_総	/	<u> </u>	-
1140	—	-	_

アドバンス英語244

 \mathbb{IV}

アドバンス英語 Advanced English

学 年 第5学年 科目分類 必 修 前期·後期 通 年 単 位 1

卒論教室指導教員

学習目標 (GIO)

国際化の中、重要な医療情報は英語で発信される昨今において、薬剤師は、常に最新の情報を得るために英語力を高めておくことが要求される。英文学術誌や雑誌等から情報を得て、それをまとめ情報提供できる能力を身に付けていく。各卒論教室にて英文の学会誌、雑誌を購読し、討論や発表等を演習形式で実施する。

行動目標 (SBOs)

将来、最新の医療情報を入手し、医療現場や学術会議、さらには企業においてプレゼンテーション、 情報発信のできる、実用的且つ実践的な英語力を身に付ける。

授業で行っている工夫: 各卒論教室の専門性と特色を生かしたプログラムを基に、グループ学習を中心に行う。プレゼンテーションもとり入れる。

成績評価方法:1) 形成的評価 a) 知識:輪読等を繰り返し、内容の把握度をチェックする。

2) 総括的評価 a) 知識:プレゼンテーション、レポート提出などにより英語対応力、内容理解力等を総合的に評価する。

c) 態度:出席、取り組み姿勢等から評価する。

特 記 事 項: 教室、講座、研究室単位で実施する。

5.6年次 必修科目

[科別特論・演習]	
医療薬学演習 Ⅱ - i	
ラボラトリー演習(1)	246
医療薬学演習 Ⅱ - ii	
ラボラトリー演習(2)	247
医療薬物薬学演習 Ⅱ - i	
ラボラトリー演習	248
医療薬物薬学演習 Ⅱ - ii	
学術論文演習	249
医療衛生薬学演習 Ⅱ - i	
ラボラトリー演習(1)	250
医療衛生薬学演習 Ⅱ - ii	
ラボラトリー演習(2)	251

■科別専門科目

医療薬学演習 II -iラボラトリー演習(1)

Seminars in Clinical Pharmacy II(i); Seminars in Laboratory Program(1)

教授 平野 俊彦 医療薬学科の教室、講座、あるいは研究室に所属する教員

学習目標 (GIO)

本学科は、薬学基礎教育の上に、医療現場で必要となる十分な知識と技能、および患者や医療チームメンバーに対する適切な態度を身につけた薬剤師および研究者を育成することを目標としている。そこで本演習では、上記の目標を達成するために、本学科の各教室、研究室における研究教育活動を通じて、医療現場で指導者的薬剤師として活躍するための知識、技能、実験技術、態度、および生涯学習能力を醸成する。

行動目標 (SBOs)

1	課題研究を遂行するための研究計画を立案し、それについて教室内の教員や学生と討議する。
2	実験技術を教室内の下級生に伝授できる。
3	教室内のセミナーに参加し、研究の背景や研究内容について討議する。
4	研究に関連する国内外の論文を読んで、その意義や自身の研究との係わりについて発表する。
5	学会、学内外の研究会、講演会、セミナーなどに参加する。
6	学会、研究会、講演会などで、自身の調査・研究内容を発表する。
7	英語のコミュニケーション能力や運用能力を身につける(TOEIC受験や英会話教室への参加)。
8	英論文を作成し、学術雑誌等に投稿する。
9	将来就職先となる病院、企業、薬局等の情報をインターネットなどを使って収集し、それに基づいて就職活動を立案する。

▋授業内容

回数	担 当	内 容	対応 (SBOs)
1~13	医療薬学科の教室、 講座、あるいは研究室 に所属する教員	上記SBOの内容	1~9

所 属 教 室: 医療薬学科の教室、講座、あるいは研究室に所属する教員 医療薬学科の教室、講座、あるいは研究室

3 (医療薬学演習 I 他科目)

単 位

医療薬学演習 II -ii ラボラトリー演習 (2)

Seminars in Clinical Pharmacy II (ii); Seminars in Laboratory Program(2)

医療薬学科の教室、講座、あるいは研究室

学 年 第5・6学年 科目分類 必 修 前期・後期 通 年

学習目標 (GIO)

教

本学科は、薬学基礎教育の上に、医療現場で必要となる十分な知識と技能、および患者や医療チームメンバーに対する適切な態度を身につけた薬剤師および研究者を育成することを目標としている。そこで本演習では、上記の目標を達成するために、本学科の各教室、研究室における研究教育活動を通じて、医療現場で指導者的薬剤師として活躍するための知識、技能、実験技術、態度、および生涯学習能力を醸成する。

行動目標 (SBOs)

俊彦

1	課題研究を遂行するための研究計画を立案し、それについて教室内の教員や学生と討議する。
2	実験技術を教室内の下級生に伝授できる。
3	教室内のセミナーに参加し、研究の背景や研究内容について討議する。
4	研究に関連する国内外の論文を読んで、その意義や自身の研究との係わりについて発表する。
5	学会、学内外の研究会、講演会、セミナーなどに参加する。
6	学会、研究会、講演会などで、自身の調査・研究内容を発表する。
7	英語のコミュニケーション能力や運用能力を身につける(TOEIC受験や英会話教室への参加)。
8	英論文を作成し、学術雑誌等に投稿する。
9	将来就職先となる病院、企業、薬局等の情報をインターネットなどを使って収集し、それに基づいて就職活 動を立案する。

授業内容

回数	!	担 当	内 容	対応 (SBOs)
1~1	3	医療薬学科の教室、 講座、あるいは研究室 に所属する教員	上記SBOの内容	1~9

所 属 教 室: 医療薬学科の教室、講座、あるいは研究室に所属する教員 医療薬学科の教室、講座、あるいは研究室

医療薬物薬学演習 II -i ラボラトリー演習

Seminars in Clinical Applied Pharmacy II (i); Seminars in Laboratory Program

修

学 年 科目分類 第5・6学年 必 **卒論教室指導教員** 医療薬物薬学科

学習目標 (GIO)

医療薬物薬学科は薬の創製を取り巻く科学と技術の進展に合わせ、疾病の予防、診断、治療のた めに有用な創薬研究に挑戦できる人材の育成に重点を置いております。既存の薬学の基礎および 専門教育にとどまらず、薬の創製に関連する専門領域の教育も幅広く行い、この分野の社会的な ニーズを的確に捉えられる能力を育てるのを目的としております。医療薬物薬学科には多くの研 究室が所属しております。これらの所属研究室において研究目的を達成するための研究活動を習 得します。

前期・後期

诵 年

行動目標 (SBOs)

A、Bコース生とも実務実習を行っていない時期に、医療薬物薬学科に所属の卒論教室で研究報 告会に参加し、研究の進捗状況を討議する。研究報告会などのセミナーを通じて、コミュニケーショ ン能力、プレゼンテーション能力を培う。

成 績 評 価 方 法: 1) 形成的評価 a) 知識: 各研究報告会に毎回参加し、討論を行い、研究報告会を通して知識が 増しているか否か評価する。

3 (医療薬物薬学演習 I 他科目)

単 位

- b) 技能:研究会の討論を通して、質問の仕方、答え方などを評価する。
- c) 態度:毎回の研究報告会に出席し、討論に参加しているか否かで評価する。
- a) 知識:全研究報告会に参加して、研究室の研究について知識が増したか否か 2) 総括的評価 で評価する。
 - b) 技能:全研究報告会において討議方法、プレゼンテーション技術が身に着い たか否かで評価する。
 - c) 態度:研究報告会に毎回出席し、研究目標をしっかり把握し、コミュニケーショ ン能力やプレゼンテーション能力が養われることにより評価する。

3 (医療薬物薬学演習 I 他科 目と併せて単位認定する

単 位

Ι

医療薬物薬学演習 II -ii 学術論文演習

修

Seminars in Clinical Applied Pharmacy II (ii); Scientific Article Reviews

学 年 第5・6学年 科目分類 **必 卒論教室指導教員** 医療薬物薬学科

学習目標 (GIO)

薬の創製を取り巻く科学と技術の進展、およびこの分野を中心とする社会のニーズを的確に捉えて、疾病の予防、診断、治療のために有用な薬の創薬研究に挑戦できる研究者を養成するには、学術論文を正確に読み、理解し研究に役立てなくてはならない。本演習では、日本語の学術論文はもとより、英語の学術論文も十分に理解できる能力を習得する。

前期・後期

诵 年

行動目標 (SBOs)

A、Bコース生とも実務実習を行っていない時期に、医療薬物薬学科に所属の卒論教室で研究課題に関連する文献を調査する。文献を通して、学術論文の読み方を勉強し、課題研究に役立てる。Aコース生は、調査した文献をもとに課題研究の実験を行う。Bコース生は、調査した文献をもとに課題研究論文の作成を行う。

成績評価方法:1) 形成的評価 a) 知識:各演習において、学術論文の検索、読み方、理解の度合いなどにより 評価する。

b)技能:各演習を行うことにより、学術論文の検索技術、理解力を評価する。

c)態度:毎回の演習に出席し、学術論文を正確に読むことにより評価する。

2) 総括的評価 a) 知識:全演習を終えたとき、Aコース生は、調査した学術論文により課題研

究を進められたか、Bコース生は調査した論文が課題研究論文に反映

されているかで評価する。

b) 技能:学術論文の利用方法が有効であったかで評価する。

c)態度:全演習に出席し、学術論文を十分に理解し、有効活用できたかで評価する。

IX

医療衛生薬学演習 II -iラボラトリー演習(1)

Seminars in Clinical Biopharmacy II(i); Seminars in Laboratory Program(1)

卒論教室指導教員

学習目標 (GIO)

課題研究では、研究テーマについて、じっくりと時間をかけて深く・詳細に探求する。さらに、そこで自らが得た新たな発見について世に問いかけることで社会への貢献の一歩を経験する。一方で、本学科の学生はさまざまな分野で活躍することが期待されている。そのような分野で活躍するためには、課題研究でひとつのことについて深く・詳細に探求することに加え、広い視野から様々なことについて学ぶ必要がある。例えば、医療に関わる新たな情報を常に発見・価値判断する能力、高いコミュニケーション能力、指導力、積極的な発言能力、表現力、国際化(グローバリゼーション)への対応能力などが上げられる。またそのような学習態度を生涯継続できるような自己主導型生涯学習能力を身につける必要がある。

本演習は、卒論教員の指導の下で、学会、講演会、研修会への参加、学会や研修会での発表、英会話、 TOEIC受験、屋根瓦式教育への参加、など学内外において様々な演習を行う。プログラムは卒論 配属単位で教員が立案する。

行動目標 (SBOs)

5-6年次には課題研究を通じて、医療の担い手にふさわしい知識、技能、態度を醸成する(課題研究)。それに加えて、卒論教室では医療に関わる幅広い知識を身につける多くのチャンスがある。それらの多くを吸収することで自己主導型生涯学習能力が身につくものと考える。卒論配属先ごとに個性的なプログラムが準備されるので、それらに積極的に関わることを期待している。

モデル・コアカリ: キュラムとの関

モデル・コアカリ::A 全学年を通して:ヒューマニズムについて学ぶ

- (1) 生と死
 - (2) 医療の担い手としてのこころ構え
 - (3) 信頼関係の確立を目指して
- E 卒業実習教育
- E1 総合薬学研究
 - (1) 研究活動に求められる態度
 - (2) 研究活動を学ぶ
 - (3) 未知との遭遇
- E2 総合薬学演習

成績評価方法:自己主導型生涯学習能力の醸成について日々の活動を通じてフィードバックを繰り返す

医療衛生薬学演習 II -ii ラボラトリー演習 (2)

Seminars in Clinical Biopharmacy II(ii) ;Seminars in Laboratory Program(2)

学 年 第5・6学年

科目分類 必 修

前期・後期 通 年

単 位

3 (医療衛生薬学演習 1 他科)

卒論教室指導教員

学習目標 (GIO)

課題研究では、研究テーマについて、じっくりと時間をかけて深く・詳細に探求する。さらに、そこで自らが得た新たな発見について世に問いかけることで社会への貢献の一歩を経験する。一方で、本学科の学生はさまざまな分野で活躍することが期待されている。そのような分野で活躍するためには、課題研究でひとつのことについて深く・詳細に探求することに加え、広い視野から様々なことについて学ぶ必要がある。例えば、医療に関わる新たな情報を常に発見・価値判断する能力、高いコミュニケーション能力、指導力、積極的な発言能力、表現力、国際化(グローバリゼーション)への対応能力などが上げられる。またそのような学習態度を生涯継続できるような自己主導型生涯学習能力を身につける必要がある。

本演習は、卒論教員の指導の下で、学会、講演会、研修会への参加、学会や研修会での発表、英会話、 TOEIC受験、屋根瓦式教育への参加、など学内外において様々な演習を行う。プログラムは卒論 配属単位で教員が立案する。

行動目標 (SBOs)

5-6年次には課題研究を通じて、医療の担い手にふさわしい知識、技能、態度を醸成する(課題研究)。それに加えて、卒論教室では医療に関わる幅広い知識を身につける多くのチャンスがある。それらの多くを吸収することで自己主導型生涯学習能力が身につくものと考える。卒論配属先ごとに個性的なプログラムが準備されるので、それらに積極的に関わることを期待している。

モデル・コアカリ∷A 全学年を通して:ヒューマニズムについて学ぶ

キュラムとの関

- (1) 生と死
- (2) 医療の担い手としてのこころ構え
- (3) 信頼関係の確立を目指して
- E 卒業実習教育
- E1 総合薬学研究
 - (1) 研究活動に求められる態度
 - (2) 研究活動を学ぶ
 - (3) 未知との遭遇
- E2 総合薬学演習

成績評価方法:自己主導型生涯学習能力の醸成について日々の活動を通じてフィードバックを繰り返す

(((</l>(((((((((((((</l>((((((<li

本	补 别	一	47	枓	E
Г 	LOI	ı" ~	. —	: ф з	151

[ア	ドノ	バン	ス演	習]
----	----	----	----	----

アドバンス法規演習 254
アドバンス化学演習 256
アドバンス物理演習 256
アドバンス生物演習 257
アドバンス健康・環境演習 257
アドバンス創薬演習 258
アドバンス薬・疾病演習 258
科別特論・演習]
医療薬学演習 II -iii ······ 259
医療薬物薬学演習 II-iii ······ 260
医療衛生薬学演習 II-iii ······· 261

アドバンス法規演習

Advanced Seminar in Pharmaceutical Affairs Laws

 学年
 第6学年
 科目分類
 必修
 前期・後期
 前期
 単位
 0.5

 教授(客員)
 尾崎 恭一
 教授(客員)
 長島 隆

学習目標 (GIO)

医療に関わる諸問題の中から倫理的な課題を見出し、医療倫理の基本的な考え方に基づいて解決策を考え、異なる倫理的立場からの意見を理解し、討論を通じて集団的見解をまとめるために必要な態度と能力を養う。

講師紹介

尾崎 恭一

1992年 関東学園大学経済学部助教授(2001年 法学部移籍)、1996-97年 フンボルト大学医学部 Gastdozent、2002年 埼玉学園大学人間学部教授、2002-04年・2008-10年 日本医学哲学・倫理学会副会長、2006年-日本臨床死生学会理事

長島 降

1988年日本医科大学哲学倫理学教室専任講師、1991年10月同助教授、1996年7月同情報科学センター兼任(「情報倫理学」担当)、2002年4月から東洋大学文学部教授(「カントとドイツ観念論」分野担当)同文学研究科兼任、1992-93年、ドイツ・ボン大学哲学科客員研究員、2006-07年マールブルク大学哲学科客員教授(交換)、2004年10月から2006年10月日本医学哲学・倫理学会会長。

▋行動目標 (SBOs)

1	倫理、生命倫理、医療倫理の基本的な考え方について理解し、説明することができる。
2	医療の諸領域の倫理問題を説明し、医療倫理の諸原則に基づいた解決策の類型を述べることができる。
3	医療倫理に関わる法令・宣言・指針などについて、医療倫理の諸原則に基づいて理解し、説明することができる。
4	医療の具体的な場面から倫理問題を取り出し、具体的な解決策を医療倫理に関わる法令・宣言・指針などに 基づいて自らの意見をまとめ、小論文やパワーポイントを作成することができる。
5	医療倫理の諸問題について、倫理原則や公的倫理文書に基づき、小集団内で文書やパワーポイントを用いて 意見を発表し、他人の発表を理解することができる。
6	小集団内で討論を通じて集団的見解をまとめ、集団で分担して文書やパワーポイントを作成し、発表することができる。
7	薬剤師として、医療倫理の生涯研鑚に努める姿勢と能力を培う。

授業内容

回数	担 当	内 容	対応 (SBOs)
第1回	尾崎、長島	a. 「医療倫理の考え方」の講義。 b. 班分けし医療倫理の諸分野を班に割当てた文書を使い、次週までに当該分野の倫理問題をリストアップする、という調査課題を説明する。	1, 2
第2回	尾崎、長島	a.各班が担当した分野について、書き込み式チェックリストをもとに、各人がリストアップした倫理問題を集計し、各々に関する諸主張を考え出しあい、発表するべき倫理問題を絞る。 b.次週までに、発表する倫理問題について主張を網羅するとともに各々の倫理的根拠を調査してくるため、班内分担をする。 C.各自がチェックリストの写しを、各班が班内分担表の写しを提出する。	4, 5

回数	担 当	内 容	対応 (SBOs)
第3回	尾崎、長島	a. 「医療倫理の諸問題」の講義。 b. 学生は、前回課題の発表テーマに関する諸主張・根拠リストを 提出する。 c. 次回までの課題として、各主張をその根拠に従って倫理的に妥 当な序列化案を作成し、PPTにまとめることを求める。	3
第4回	尾崎、長島	a.各班で、各自作成の報告PPT案印刷物を教員と班員に提出し、 議論して倫理的に妥当な一本化を行う。 b.それを次週に発表するための班PPT作成者(複数)と口頭原 稿作成・発表者(複数)、当該テーマ小論文作成者(複数)な どの分担をする。	4、5
第5回	尾崎、長島	半数の班がパワーポイントを用いて順次発表し、全体質疑応答を 行う。	6
第6回	尾崎、長島	残りの半数の班がパワーポイントを用いて順次発表し、全体質疑 応答を行う。	6
第7回	尾崎、長島	a.各テーマ発表の長所と問題点についてコメントをしつつ、 b.薬剤師として現場で医療倫理の問題に気づき、妥当な解決を図れるために必要な、生涯研鑽のあり方について講義する。	7

授業で行っている工夫: 1. 講義において、PPTとサブノート式授業時配布物の併用により、受講生が視覚確認と手作業による学習を行い習得しやすくしている。

- 2.受講生が比較的答えやすく、関心をもつべき事項の発問に心がけるなど、受講生の参加意識を 高める工夫をしている。
- 3.主体的な学習態度を涵養するために、自ら医療における事実を調査し、そこに医療倫理問題を 発見し、その解決策を考える、という積極的な学習機会を提供している。
- 4. 妥当な解決策のため、客観的な事実と普遍的な理論を根拠にして自らの意見を形成し、異なる 意見を理解し、その当否を議論し、集団的見解をまとめる機会を提供している。

モデル・コアカリ: A. 全学年を通じて: ヒューマニズムについて学ぶ

キュラムとの関連 (1) 生と死

- (2) 医療の担い手としてのこころ構え
- (3) 信頼関係の確立を目指して
 - ・以上の項目を中心的に扱い、他の事項については倫理に関わる限りで触れることにする。

成 績 評 価 方 法: レポートや調査の妥当性、発表・議論参加の内容や態度、受講態度、出席率などを加味し総合評価をする。

教 科 書:薬学生のための医療倫理(松島哲久、盛永審一郎編著 丸善株式会社)

参考書:資料集生命倫理と法(尾崎恭一、長島隆他編著太陽出版)

薬剤師のモラルジレンマ(松田純、川村和美、渡辺義嗣編著 南山堂)

ケーススタディによる薬剤師の倫理 原著第2版 (R. M.ヴィーチ、A.ハダッド著 共立出版) 薬剤師のための倫理 (R. M.ヴィーチ、A.ハダッド著 南山堂)

薬剤師とくすりと倫理(奥田 潤、川村和美著 じほう)

教員からの一言:薬剤師の社会的な役割と裁量はますます重要なものになりつつあり、それとともに独立して担う 責任も大きくなります。それに応えられるだけの科学性と倫理性をしっかり身につけて頂きたい のです。とくに医療倫理の社会的意義は今後大きくなっていきますし、社会の目もすでに厳しく なっています。

そのため本講において、医療現場の薬剤師として倫理問題に適切に対処できる力を獲得しましょう。具体的には、医療倫理の考え方や医療倫理の諸問題、様々な倫理的立場からの解決策を理解し、議論を通じて妥当な集団的判断をまとめる力を養うとともに、自ら生涯研鑚を続けていける土台を築ことが大切です。講義と議論に積極的に参加し、ぜひ主体的に学び取って下さい。

アドバンス化学演習

Advanced Seminar in Chemistry

第6学年 科目分類 必 修 前期・後期 後 期 付 0.5

学習目標 (GIO)

教 授

> コアカリキュラムC4~C7に関して、「医薬品の性質を理解すること」を主題とし、有機化合物と しての医薬品の物性、反応性、分子レベルでの医薬品の作用機序等に関する基礎知識と、基本的 な知識を複数組み合わせた応用力を身につけ、薬剤師国家試験に対応できる能力を養う。

▋行動目標 (SBOs)

加藤

哲太

1	化学物質の性質と反応
2	ターゲット分子の合成
3	生体分子・医薬品の化学
4	自然が生み出す薬物

これらに関する内容について、講義、自学習などを通じて理解を深め、その到達度をチェックテ スト、アドバンス演習試験で確認しながら、薬剤師国家試験対応能力を育成する。

モデル・コアカリ:モデル・コアカリキュラムC4~C7 キュラムとの関連

アドバンス物理演習

Advanced Seminar in Physical Chemistry

科目分類 単 位 年 第6学年 必 前期・後期 後 期 0.5

授 教 加藤 哲太

学習目標 (GIO)

コアカリキュラムC1~C3に関して、医薬品・生物分子を理解する上で必要な物理化学的・分析 化学的な考え方を身につけ、薬剤師国家試験に対応できる能力を養う。

行動目標 (SBOs)

1	物質の物理的性質
2	化学物質の分析
3	生物分子の姿・かたち

これらに関する内容について、講義、自学習などを通じて理解を深め、その到達度をチェックテ スト、アドバンス演習試験で確認しながら、薬剤師国家試験対応能力を育成する。

モデル・コアカリ: モデル・コアカリキュラムC1~C3

キュラムとの関連

アドバンス生物演習

科目分類

必修

Advanced Seminar in Biological Science

柼

0.5

教 授 **加藤 哲太**

第6学年

学習目標(GIO)

コアカリキュラム C8~C10 に関して、生体の構造、機能及び生体成分の代謝などに関する基礎的知識、また感染症の病原体、免疫のしくみなどに関する基礎的知識を身につけ、薬剤師国家試験に対応できる能力を養う。

後 期

前期・後期

▋行動目標 (SBOs)

1	生命体の成り立ち
2	生命をミクロに理解する
3	生体防御

授業内容 これらに関する内容について、講義、自学習などを通じて理解を深め、その到達度をチェックテスト、アドバンス演習試験で確認しながら、薬剤師国家試験対応能力を育成する。

モデル・コアカリ: モデル・コアカリキュラム C8~C10

キュラムとの関連

アドバンス健康・環境演習

Advanced Seminar in Health Science

 学年
 第6学年
 科目分類
 必修
 前期·後期後期
 後期
 単位
 0.5

 教授
 加藤哲太

学習目標 (GIO) コアカリキュラム C11~C12 に関して、衛生化学・公衆衛生学を中心として、栄養化学、環境科学、毒性学、環境微生物学、生態学などの基礎的知識を身につけ、薬剤師国家試験に対応できる能力を養う。

▍行動目標 (SBOs)

1	栄養と健康
2	社会と集団と健康
3	疾病の予防
4	化学物質の生体への影響
 5	生活環境と健康

授業内容 これらに関する内容について、講義、自学習などを通じて理解を深め、その到達度をチェックテスト、アドバンス演習試験で確認しながら、薬剤師国家試験対応能力を育成する。

モデル・コアカリ: モデル・コアカリキュラムC11、C12

キュラムとの関連

アドバンス創薬演習

必修

Advanced Seminar in Drug Discovery

柼

0.5

学年 第6学年 科目分類

哲太

学習目標 (GIO)

教 授

コアカリキュラムC13 (一部)、C16に関して、医薬品の体内動態、および製剤に関する基礎知識を身につけ、薬剤師国家試験に対応できる能力を養う。

後 期

前期・後期

▋行動目標 (SBOs)

加藤

1	薬物動態
2	製剤化のサイエンス

授業内容

これらに関する内容について、講義、自学習などを通じて理解を深め、その到達度をチェックテスト、アドバンス演習試験で確認しながら、薬剤師国家試験対応能力を育成する。

モデル・コアカリ:モデル・コアカリキュラムC13~C16 **キュラムとの**関連

アドバンス薬・疾病演習

Advanced Seminar in Drugs and Diseases

学	年	第6	学年	科目分類	必	修	前期・後期	後	期	単	位	0.5
教	授	加藤	哲太									

学習目標 (GIO) コアカリキュラムC13 (一部) ~ C14に関して、薬理作用や相互作用に関する知識、晩じゃの病態生理を理解し、適正かつ安全な薬物治療法の遂行のために必要な知識を身につけ、薬剤師国家試験に対応できる能力を養う。

▋行動目標 (SBOs)

1	薬の効くプロセス
2	薬物治療
3	薬物治療に役立つ情報

| 授業内容 これらに関する内容について、講義、自学習などを通じて理解を深め、その到達度をチェックテスト、アドバンス演習試験で確認しながら、薬剤師国家試験対応能力を育成する。

モデル・コアカリ: モデル・コアカリキュラムC13~C14 **キュラムとの**関連

 ∇

医療薬学演習Ⅱーiii Seminars in Clinical Pharmacy II(iii)

学部教員

学習目標 (GIO)

医療の担い手として必要とされる基本的な知識等のほか、薬学の全領域に及ぶ一般的な理論や、 医療を中心とした実践の場において必要とされる知識・技能・態度等について、6年間の学習を 振り返り、演習を繰り返すことで、総合的な実力を身につける。

▋行動目標 (SBOs)

以下に示す大項目のすべてについて、演習を通じて実力を高める。

物理	物質の物理的性質 化学物質の分析 生体分子の姿・かたちをとらえる 化学物質の性質と反応 ターゲット分子の合成 生体分子・医薬品を化学で理解する 自然が生み出す薬物 医薬品の開発と生産
生物	生命体の成り立ち 分子レベルの生命理解 感染症と生体防御 バイオ医薬品
衛生	健康 環境
薬理	薬の効くプロセス 製剤化のサイエンス
病態・薬物治療	薬物治療 薬物治療に役立つ情報
法規・制度・倫理	医薬品の開発と生産 薬学と社会 ヒューマニズム イントロダクション
実務	実務実習事前学習 病院実習 薬局実習

成 績 評 価 方 法:1) 形成的評価 a):知識 演習に対するフィードバックを繰り返す

2)総括的評価 a):知識 演習のスコアをもとに評価する

Π

XI 実習科目

医療薬物薬学演習 II ー iii

Seminars in Clinical Applied Pharmacy II (iii)

 学年
 第6学年
 科目分類
 必修
 前期・後期
 後期
 単位
 3(医藤藤栗澤澤間1時) 自と供じて単立設定する)

学部教員

▍学習目標 【(GIO) 医療の担い手として必要とされる基本的な知識等のほか、薬学の全領域に及ぶ一般的な理論や、 医療を中心とした実践の場において必要とされる知識・技能・態度等について、6年間の学習を 振り返り、演習を繰り返すことで、総合的な実力を身につける。

┃ 行動目標 (SBOs)

以下に示す大項目のすべてについて、演習を通じて実力を高める。

物理	物質の物理的性質 化学物質の分析 生体分子の姿・かたちをとらえる 化学物質の性質と反応 ターゲット分子の合成 生体分子・医薬品を化学で理解する 自然が生み出す薬物 医薬品の開発と生産
生物	生命体の成り立ち 分子レベルの生命理解 感染症と生体防御 バイオ医薬品
衛生	健康環境
薬理	薬の効くプロセス 製剤化のサイエンス
病態·薬物治療	薬物治療 薬物治療に役立つ情報
法規・制度・倫理	医薬品の開発と生産 薬学と社会 ヒューマニズム イントロダクション
実務	実務実習事前学習 病院実習 薬局実習

成績評価方法:1) 形成的評価 a):知識 演習に対するフィードバックを繰り返す

2)総括的評価 a):知識 演習のスコアをもとに評価する

選3年次

医療衛生薬学演習 II ー iii

Seminars in Clinical Biopharmacy II(iii)

 学年
 第6学年
 科目分類
 必修
 前期・後期後期
 後期
 単位
 3(原動注業学習工順的)

 学部教員

学習目標 (GIO)

医療の担い手として必要とされる基本的な知識等のほか、薬学の全領域に及ぶ一般的な理論や、 医療を中心とした実践の場において必要とされる知識・技能・態度等について、6年間の学習を 振り返り、演習を繰り返すことで、総合的な実力を身につける。

行動目標 (SBOs)

以下に示す大項目のすべてについて、演習を通じて実力を高める。

物理	物質の物理的性質 化学物質の分析 生体分子の姿・かたちをとらえる 化学物質の性質と反応 ターゲット分子の合成 生体分子・医薬品を化学で理解する 自然が生み出す薬物 医薬品の開発と生産
生物	生命体の成り立ち 分子レベルの生命理解 感染症と生体防御 バイオ医薬品
衛生	健康環境
薬理	薬の効くプロセス 製剤化のサイエンス
病態・薬物治療	薬物治療 薬物治療に役立つ情報
法規・制度・倫理	医薬品の開発と生産 薬学と社会 ヒューマニズム イントロダクション
実務	実務実習事前学習 病院実習 薬局実習

成績評価方法:1) 形成的評価 a):知識 演習に対するフィードバックを繰り返す

2)総括的評価 a):知識 演習のスコアをもとに評価する

1·2年次 選択科目

(総	合	科	目)
`	41.404	\mathbf{H}	71-71	\mathbf{H}	,

[一般総合科目]
健康科学264
地球環境概論 · · · · · · 266
芸能・文化268
哲 学269
現代経済論270
国際関係論271
美術・イラストレーション 272
文章表現 · · · · · · 273
コミュニケーション論 275
法 学277
情報リテラシーⅡ279
健康スポーツ 281
[外国語科目]
英語検定 I ·······282
英語検定Ⅱ283
英会話 I ······ 284
英会話 [284
英会話 [285
英会話 [(科学英語コミュニケーション) … 286
英会話Ⅱ288
英会話Ⅱ288
英会話Ⅱ289
英会話Ⅱ (科学英語コミュニケーション)290
ドイツ語 I292
ドイツ語 🛘293
中国語 I294
中国語Ⅱ295
フランス語 [296
フランス語Ⅱ298
■専門科目
[ゼミナール]
ゼミナール300
■自由科目
基礎物理学集中講義302

■総合科目

健康科学 Health Sciences

学 年 第 1 **学**年 科目分類 **選 択** 前期 · 後期 前 (男)· (関(女子) 単 位 1

准教授 與那 正栄

学習目標 (GIO)

将来、活力ある生活設計の基本となる健康に関する理論的実践的知識を修得することは大切です。 そのために加齢に伴う身体機能の衰退と健康の維持・増進を実現するための知識を習得すること で、予防医学の一分野を理解し、自己健康管理能力とその実践的技能を身につけてください。

┃ 行動目標 (SBOs)

-	
1	高齢化社会に向けて健康とはなにか、何故健康を維持する必要があるかを理解する。(知識)
2	運動習慣と身体諸機能の維持・増進の関連性について理解する。(知識)
3	運動能力の差を身体諸機能の違いから理解する。(知識)
4	身体活動に必要なエネルギーが産生される過程を理解する。(知識)
5	運動の発現機構を神経筋機構から理解する。(知識)
6	運動の持久的機構を呼吸・循環機構から理解する。(知識)
7	運動の強さと身体で使われる酸素の量(酸素摂取量)の関係を理解する。(知識)
8	運動形態の違いによる心拍数・換気量・血圧などの身体機能の応答を理解する。(知識)
9	身体諸機能の成長・発達・老化現象を理解する。(知識)
10	現代人が罹りやすい運動不足に伴う身体諸機能の変化と生活習慣病との関わりを理解する。(知識)
11	運動可能な疾病(糖尿病・軽症高血圧症など)に対し、適切な運動が指導できるようにその原理と方法を理解し、その指導技能を習得する。(知識・態度)
12	若年者・中高年者に対する健康維持・増進のためのトレーニング方法の原理と方法を理解し、その指導技能 を習得する。(知識・態度)

回数	担 当	内 容	対応 (SBOs)
1	與那	導入(健康とは)	1, 2
2	//	健康と体力の関係 運動不足と生活習慣病について	2、10
3	//	身体活動に関わるエネルギー産生の代謝経路について	3、4
4	//	代謝系から見た生活習慣病に対する運動処方	4、11
5	//	身体活動に関わる神経筋機能について	3, 5, 12
6	//	神経筋機能を向上させる運動処方および体力トレーニング	5、11、12
7	//	身体活動に関わる呼吸機能について	3, 6, 7
8	//	呼吸機能を向上させる運動処方および体力トレーニング	6、7、11、12
9~10	//	身体活動に関わる循環系機能について	3, 6, 8
11	//	循環機能を向上させる運動処方および体力トレーニング	7, 8, 11, 12
12	//	成長・発達・老化による身体諸機能の変化について	3, 9, 10
13	//	総括	

XI 実習科目

授業で行っている工夫: 1 年生前期の「生物学」および「細胞生物学」、1 年生後期の「生化学 I 」、2 年生の「生化学 II 」 および「生化学 II 」を当該科目とともに健康維持・増進の関連科目、すなわち基礎から応用までステップアップする講義と捉え、一貫性を重視して講義の理解度を上げることを工夫している。一方、限られた講義時間を効率よく利用するために講義の重複部分についても必要・不要等の調整をおこなっている。また、毎時間、健康および薬に関連する最新ニュースを提供しながら、最新の研究から得た資料を加え、実践に役立つ内容になるよう努めている。

モデル・コアカリ: · C8 生命の成り立ち (1) ヒトの成り立ち (3) 生体の機能調節 (4) ATPの産生 キュラムとの関連 · C11 健康 (2) 保健統計・健康と疾病をめぐる日本の現状 (3) 健康とは・生活習慣病と その予防

成績評価方法: 1) 形成的評価 a) 知識:カロリー表を用い、自己の生活をフィードバックする。

b) 技能: 栄養表・消費カロリー・摂取カロリー表を活用する。

c) 態度:授業を通して細やかにフィードバックする。

2) 総括的評価 a) 知識:出席・態度・レポート・定期試験などを総合的に評価する。

b)技能:運動処方・栄養処方を行う。

c) 態度:2/3以上に出席することを合格条件とする。

参考 書:與那 運動科学(室 増男 理工学社)

オフィスアワー: 與那 前期、月曜日以外原則的に可。後期、原則的に可。 保健体育学研究室 体育館3階

地球環境概論

Introduction to Global Environment

学年 第1学年 科目分類 選択 前期·後期 繭(好)·衡(男) 単位 1

教授(兼担) 高橋 勇二

教授(兼担) 藤原祺多夫

教授(兼担) 都筑 幹夫

学習目標 (GIO)

今日、人類の活動は、地域の環境や地球全体の環境にさまざまな形で関わっており、社会問題となっていることも多い。生活環境と健康についての理解を深めるため、化学物質や生態系を構成する生物等に視点を置き、水や大気の環境問題解決に向けて、人類がどう対処すべきであるのかを考察する。

┃ 行動目標 (SBOs)

1	環境とは何か、地域と地球レベルの環境とその保全の取り組みを理解し、それを説明できる。
2	多様な生物の存在と社会との関わりについて説明できる。
3	生物と環境との相互作用、生物間の競争と共生について説明できる。
4	地球の過去の環境変化と生物との関わりについて説明できる。
5	生物と遺伝子を資源としてとらえ、これらの資源保存の意義を説明できる。
6	二酸化硫黄や一酸化炭素の発生と人体への影響について説明できる。
7	光化学オキシダントの生成とその性質について説明できる。
8	大気粉塵微粒子の起源と健康への影響について説明できる。
9	海洋・河川などにおける金属イオンの汚染、富栄養化などの問題について説明できる。
10	人間活動がもたらした温暖化と気候変動を説明できる。
11	人類の進化と適応の過程、人口増加機構について説明できる。
12	健康の維持と環境保全の関わりについて説明できる。
13	薬害と環境汚染による健康被害について説明できる。

回数	担 当	内 容	対応 (SBOs)
1	都筑	人と環境、本学の取り組み方について	1
2	//	生物多様性と人との関わりについて	2
3	//	生物と環境、および生物間の相互作用について	3
4	//	地球環境の過去の変遷と生物との関わりについて	4
5	//	生物と遺伝子資源、その保全について	5
6	藤原	二酸化硫黄や一酸化炭素の健康評価について	6
7	//	窒素酸化物と光化学オキシダントについて	7
8	//	大気粉塵微粒子の起源とその健康への影響について	8
9	//	水質汚染(重金属イオン、富栄養化)について	9
10	高橋	人間活動と環境(1)人間活動がもたらした温暖化と気候変動 について	10

必修科次

選3年次

回数	担 当	内 容	対応 (SBOs)
11	//	人間活動と環境(2)人類の進化と適応の過程、人口増加機構 について	11
12	//	人間活動と環境(3)健康の維持と環境保全の関わりについて	12
13	//	人間活動と環境(4)薬害と環境汚染による健康被害について	13

授業で行っている工夫:講義ごとに出席状況を確認し、学生の学習状況や意欲の把握に努める。また、教員ごとに評価す

ることで、問題解決能力に必要な視野の拡大を図る。

モデル・コアカリ: C12環境(2)生活環境と健康 【地球環境と生態系】【水環境】【大気環境】

キュラムとの関連

成 績 評 価 方 法 : 1)形成的評価:講義ごとに出席を取り、あわせて随時試験あるいはレポート形式での記述を課す。

その結果から、a) 知識とb) 技能を評価する。また、その記載状況からc) 態度の判定とする。 2) 総括的評価:講義ごとの出席状況と出席カードの記載状況を総合的に評価し、a) 知識、b) 技能、

c) 態度の各内容を判定する。

教 科 書:特に指定しない。

参考 書: 必要に応じて、講義の中で紹介する。 オフィスアワー: 下記連絡先に連絡して、予約すること。

所属教室: 高橋 生命科学部環境ストレス生理学研究室 研究3号館4階

藤原 生命科学部環境衛生化学研究室 研究3号館3階 都筑 生命科学部環境応答生物学研究室 研究3号館2階

芸能・文化

Communication and Culture

択

選

学 年 第1学年 科目分類

明子

学習目標

(GIO)

非常勤講師 今野

これからの医療人にはコミュニケーションが大変重要になってきます。この授業では、耳の聞こえない人たちの表現手段である『手話』を学ぶことにより、自分とは状態の異なる人たちの文化、芸能、生活の様子、コミュニケーション方法について理解を深めていきます。そこから、相手の状態や気持ちを思いやるという真のコミュニケーションの基本を習得し、自分自身のコミュニケーション能力を高めることをめざします。

前期・後期 前 期

単 位

1

┃ 行動目標 (SBOs)

1	手話の基本的な表現技術を習得し、簡単な会話ができる。
2	手話による歌、シャンソン、演劇などの魅力を理解できる。
3	耳の聞こえない人たちとのコミュニケーション方法について説明できる。
4	自分とは異なる状態の人たちに対して、相手の状況や気持ちを配慮し、適切な対応ができる。
5	耳の聞こえない人たちの生活の様子を理解し、課題を検討できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	今野	オリエンテーション 手話の魅力	1, 2, 5
2	//	基本的な手話表現(挨拶・名前)	1、3、4、5
3	//	基本的な手話表現(住所・趣味)	1、3、4、5
4	//	聴覚障害者の芸能・文化・生活 (ビデオ視聴)	2, 3, 4, 5
5	//	基本的な手話表現(家族)	1、3、4、5
6	//	基本的な手話表現(数字)	1、3、4、5
7	//	聴覚障害者の芸能・文化・生活 (ビデオ視聴)	2、3、4、5
8	//	医療現場で役立つ手話	1、3、4、5
9	//	場面ごとの会話練習(1)	1、3、4、5
10	//	場面ごとの会話練習 (2)	1, 3, 4, 5
11	//	聴覚障害者の生活体験談	1、2、3、4、5
12	//	さまざまなコミュニケーション方法(筆談、口話、身振り等)	1、3、4、5
13	//	手話実技試験	1, 3, 4, 5

授業で行っている工夫: できるだけ手話実技の時間を多くとり、一人ひとりの手話をチェックしながら、身体で自然に覚えるようにする。聴覚障害者を招いて、生きた手話に触れながら生活体験談を聞く。

成 績 評 価 方 法: 1) 形成的評価 a) 知識:ビデオ視聴時には感想や疑問点を記録する。

b) 技能:手話表現をまめにチェックする。

c) 態度:受講態度を加味する。

2) 総括的評価 a) 知識:レポートや提出物を総合的に評価する。

b) 技能:手話表現の実技試験を行う。 c) 態度:出席状況を加味して評価する。

教 科 書:特になし(適宜プリント配布)

参考書:『すぐに使える手話単語集』(緒方英秋著 ナツメ社) オフィスアワー:前期 火曜・金曜の授業時間帯前後 薬学事務課にて可 哲 学 Philosophy

学年 第1・2学年 科目分類 選択 前期・後期後期 単位 1

非常勤講師 宮田 幸一

学習目標 (GIO)

哲学は、人間が自分の行動を反省し、よりよい人生を送るための考え方や知識を参考材料として 提供しようとするものである。よりよい人生を送るためには、自分とはどのような存在であるか ということに関する自然科学的・社会科学的な考察を行うとともに、どのような生き方がよりよ い生き方であるかについて、それなりに思索する必要がある。自然科学、社会科学による人間研 究の成果を参照しつつ、総合的な人間学について理解する。

┃ 行動目標 (SBOs)

1	人間についての進化論の意義を理解する。
2	人間の心についての多様な見方を理解する。
3	近代の心身二元論について理解する。
4	哲学的な知識論、真理論について理解する。
5	善悪に関する倫理的な問題について理解する。
6	その具体例として環境倫理について理解する。
7	また生命倫理について理解する。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	宮田	哲学的人間学の課題	
2	//	進化論的人間観	1
3	//	人間の心(1)近代哲学における心の概念	2
4	//	人間の心(2)脳科学と心の概念	2
5	//	人間の行動 利己的遺伝子説の意義	1
6	//	心身二元論とその困難	3
7	//	人間の知識(1)合理論の考え方 アプリオリ	4
8	//	人間の知識(2)経験論の考え方 アポステリオリ	4
9	//	善と悪	5
10	//	環境倫理の諸問題	6
11	//	生命倫理の諸問題	7
12	//	脳科学からの挑戦へのプラグマティックな回答	2

成 績 評 価 方 法: 定期試験の結果に授業への出席を加味して総合評価する。なお、出席不良者に対しては受験停止 の措置を講ずることがあるので注意すること。

教 科 書:とくに使用しない。(プリント配布)

参 考 書:授業中に紹介する。

時 記 事 項:初回の授業でガイダンス用プリントを配布するので、出席すること。

教員からの一言: 質問などがあれば、miyata@soka.ac.jpまでメールで連絡してください。

 \blacksquare

現代経済論 Contemporary Economics

学 年 第1·2学年 科目分類 選 択 前期·後期 前 期 単 位 1

教授(客員) 津谷喜一郎 非常勤講師 大森 正博 非常勤講師 五十嵐 中

学習目標 (GIO)

医療スタッフの一員として必要な、医療経済学と経済学全般の考え方の基礎を習得・理解する。

▋講師紹介

津谷喜一郎 東京大学大学院薬学系研究科医薬政策学 特任教授 本学客員教授 五十嵐 中 東京大学大学院薬学系研究科医薬政策学 特任助教

大森 正博 お茶の水女子大学生活社会科学講座 准教授

▋行動目標 (SBOs)

1	経済学および医療経済学の基礎を理解する。
2	日本の医療に関する問題点を概説できる。
3	日本の医療制度を概説できる。
4	医療サービスの性質と、医療制度との関係を概説できる。
5	医療保険制度の基本を概説できる。
6	医療サービスの供給者としての、医療関係者および医療機関の役割を概説できる。
7	医療政策・医療規制・医療技術評価の基本を概説できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	津谷	現代経済論・概論	1
2	五十嵐	日本の医療の問題点	2
3	//	日本の医療保障制度・概説 (1)	3
4	//	日本の医療保障制度・概説 (2)	3
5	大森	医療サービスの性質と医療制度(1)	4
6	//	医療サービスの性質と医療制度(2)	4
7	五十嵐	医療保険制度(1)	5
8	//	医療保険制度(2)	5
9	大森	医療サービスの供給者の行動(1)	6
10	//	医療サービスの供給者の行動(2)	6
11	五十嵐	競争と規制	7
12	//	医療経済学から薬剤経済学へ(1)	7
13	//	医療経済学から薬剤経済学へ(2)	7

教 科 書: 大森正博. 医療経済論 (シリーズ・現代経済の課題). 岩波書店; 2008.

VI

国際関係論 International Relations

第1・2学年 科目分類 選 択 前期・後期 後 期 単 位 1 津谷喜一郎 五十嵐 中 教授 (客員) 非常勤講師 非常勤講師 松田 典子 孫 非常勤講師 一善

学習目標 (GIO)

世界の中での医薬品使用と開発の実態について、諸外国で起きている問題を実例にとって理解を深める。

▋講師紹介

津谷喜一郎 東京大学大学院薬学系研究科医薬政策学 特任教授 本学客員教授

五十嵐 中 東京大学大学院薬学系研究科医薬政策学 特任助教 松田 典子 実践女子大学 生活科学部 生活文化学科 助教

孫 一善 日本経営史協会

┃ 行動目標 (SBOs)

1	医療分野に関する、国際関係の概要を理解する。
2	世界の医療制度の中での医薬品の現状を理解する。
3	くすりギャップのうち、途上国における医薬品価格や見捨てられた疾患に対する医薬品の開発手段について 理解する。
4	くすりギャップのうち、先進国における適応外使用やドラッグ・ギャップの現状と対策案を理解する。

回数	担 当	内 容
1	津谷	国際関係論・概論
2	五十嵐	諸外国の医療保障制度(1)
3	//	諸外国の医療保障制度(2)
4	//	諸外国の医療保障制度(3)
5	松田	欧米の医療・福祉職の労働市場(1)
6	//	欧米の医療・福祉職の労働市場(2)
7	//	欧米の医療・福祉職の労働市場 (3)
8	孫	韓国の医薬品問題(1)
9	//	韓国の医薬品問題 (2)
10	//	韓国の医薬品問題 (3)
11	五十嵐	くすりギャップ(1)
12	//	くすりギャップ(2)
13	//	くすりギャップ(3)
14	//	まとめ

美術・イラストレーション Art and Illustration

学年 第1・2学年 科目分類 選択 前期・後期 前期 単位 1

非常勤講師 加藤 有希子

学習目標 (GIO)

本講は、美術、イラスト、広告などを含む、世の中に蔓延るイメージ/視覚情報全般を扱う。イメージは強いメッセージ性をもちながら、その影響力が潜在的・無意識的であるため、論理的思考では把捉しがたい。誰が制作し、誰が消費するのか、見る/見られる、の政治的、経済的、ジェンダー的力関係はいかなるものか、歴史的、文化的背景は何か。本講ではイメージに纏わるこれらの問いを投げかけ、参考となる理論体系を紹介する。

講師紹介

加藤有希子 デューク大学美術史表象文化学科 博士課程 (Ph.D.) 修了 (2010)

▋行動目標 (SBOs)

1	ふだん無意識に消費しがちなイメージを理論的に分析する術を学ぶ。
2	イメージが社会において果たしている/果たしうる役割を理解する
3	レポートの書き方を学ぶ

▋ 授業内容

回数	担当	内 容	対応 (SBOs)
1	加藤	イメージとはなにか	1, 2
2	//	開かれた記号としてのイメージ (ソシュール、パース、エーコ)	1, 2
3	//	イコノグラフィーとイコノロジー(パノフスキー)	1, 2
4	//	芸術社会学(ブルデュー)	1, 2
5	//	記録・記憶のイメージ(バルト、バル) :墓標、モニュメント、儀礼、家族写真	1, 2
6	//	欲望を担うイメージ(フロイト、ラカン) : 覗き、収集、広告	1, 2
7	//	ジェンダーに纏わるイメージ(フーコー、ポロック) :ヌード、ポルノの歴史	1, 2
8	//	扇動するイメージ (プラトン、アリストテレス、エイゼンシュタイン) :スペクタクル、サブリミナル、モンタージュ/コラージュ	1, 2
9	//	傷つけるイメージ (バトラー) : 人種差別、性差別、トラウマ	1, 2
10	//	グローバル化するイメージ (アドルノ、ベンヤミン、ボードリヤール) :転用、コピー、商品	1, 2
11	//	科学のイメージ(マクルーハン)	1, 2
12	//	医療のイメージ(フーコー)	1, 2
13	//	まとめ:レポートの書き方	1, 2, 3

授業で行っている工夫:美術史で取り上げられる絵画だけではなく、イラスト、広告、プロパガンダ、医療で使われる画像や図解など幅広く取り上げる。日常生活で何気なく接している身近なイメージを見直す機会を提供するとともに、それらを学問的に分析するための理論を、毎週テーマに沿って学べるようにする。

成 績 評 価 方 法: 出席(40%) および期末レポート(60%: 3000~4000字程度) の成績によって評価する。

教 科 書: とくになし。

参考書:必要に応じて授業時に指示する。 オフィスアワー:加藤毎週水曜日の授業後 文章表現 Japanese Composition

学年 第1・2学年 科目分類 選択 前期・後期 前期・後期 単位 1

非常勤講師 天野かおり

学習目標 (GIO)

文章を書くとき、書き手は改めて「自分の考え・考え方」を問い直すことになります。自分なりの考えを、誰にでも理解できるように示す――これが、文章の基本です。本講義では、文章を書く際の手順を一つ一つ解説していきます。また、受講者は実際に作文を提出し、添削例を通して各々の文章力向上を図って下さい。文章構成法に必要な、日本語表現に関する知識も同時に学ぶ予定です。今後の社会生活に要求される「的確に考えを伝える」技術を、文章で実践的に磨く講義です。

▋行動目標 (SBOs)

1	読み手の存在を意識し、取扱説明書などの資料から「読みやすい文章」を考える。
2	わかりやすく効果的な、言葉の選択方法を学ぶ。辞書という身近な資料について知る。
3	例文を観察し、読みやすい表記の方法・資料引用の示し方を確認する。
4	主題を選択し、意見のまとめ方を考える。
5	事実と意見を識別し、文章を構成する。
6	主題に沿って、どのように材料を集めればよいかを考える。
7	材料の並べ方を工夫し、簡潔に伝える方法を探る。
8	主題と材料を生かし、文章の「設計図」を作成する。
9	目上の人へ用件を伝える手紙文を通し、敬意表現を学ぶ。
10	同一の資料をもとに、各自で内容を文章化する。そこから文体という個性を考える。
11	一般的な「レポート」の基本構成と、それにふさわしい表現を確認する。
12	小見出し・段落の種類を知り、読みやすく伝わりやすい文章を検討する。

回数	担 当	内 容	対応 (SBOs)
1	天野	はじめに	1
2	//	文章を書く手順	1
3	//	ことばの収集・選択――辞書を知る	2
4	//	文・ことば・表記(1)	3
5	//	文・ことば・表記(2)	3
6	//	主題の選択、事実と意見の識別	4, 5
7	//	材料の収集・選択	6
8	//	材料の配列、わかりやすい説明文とは	7
9	//	アウトラインの作り方	8
10	//	敬意表現と手紙文	9
11	11	個性が表れる「文体」、レポートの基本構成	10, 11

回数	担 当	内 容	対応 (SBOs)
12	//	文章を整える「段落・トピックセンテンス」	12
13	//	まとめ	12

授業で行っている工夫: 身近な言葉に対して「考え」、その場で所感を「書く」時間を、各講義の前半に設けている。自身を取り巻く言葉の現状を振り返り、他者に「伝える」時間である。これは、薬学部の学生だからこそ必要な言語感覚を、静かに自問する時間でもある。なお記述内容は、積極的に講義へ反映させ、意見交換を図る。

成績評価方法:1)形成的評価

- a) 知識:①講義内容に応じた質問に対し、自身の経験と照合して、具体的に表現する(リアクションペーパー)。
 - ②講義内容が、文章構成法の全体像においてどのような位置付けにあるか理解し実践する (課題)。
- 2) 総括的評価
 - a) 知識:出席、平常点(リアクションペーパーの記述内容を含む)、提出課題から総合的に評価する。
 - c)態度:繰り返しの形成的評価で向上が認められれば、それを最終評価に加味する。

教 科 書:「文章構成法」(森岡健二、東海大学出版会)考 書:「理科系の作文技術」(木下是雄、中公新書)

「日本語練習帳」(大野 晋、岩波新書)

※他に、現在出版されている国語辞書・類語辞書(内容を比較して活用することを勧める。)

オフィスアワー: 天野 講義終了後 講師控室前にて (あらかじめ、薬学事務課に問合せること。)

教員からの一言: 文章力向上のためにも、課題は必ず全て提出すること。

コミュニケーション論 Communication

選択

科目分類 土屋 明美(A·B、C·D、E·F、G·H) 教 授

宮川 千春 (E·F、G·H) 非常勤講師 非常勤講師 高梨 **朋美**(A·B、C·D)

第1学年

学習目標 (GIO)

年

医療においては、患者一人ひとりが服薬に関して「自分の身体に必要な薬」という認識を持ち、 服薬支援により提供される知識や情報を意味あるものとして受け容れることが期待されています。 患者と医療従事者との良好なコミュニケーション関係が築かれることで、情報はより効果を発揮 するともいえます。相手の心理や立場・環境をふまえての人間関係のあり方や、チーム医療の一 員として働く際に必要な基本的なコミュニケーションの理論とスキルについて学習します。

前期・後期 後

期

単 位 1

┃ 行動目標 (SBOs)

1	人間関係に影響を及ぼす心理的要因を説明できる。
2	臨床的コミュニケーションの特徴を説明できる。
3	患者との受容的・共感的態度を養う。
4	相手への共感的理解を深めるコミュニケーションスキルを体得する。
5	相手の心理状態とその変化を感知し、適切に対応する。
6	意思・情報の伝達に必要な構成要素を理解する。
7	相手の立場、文化、習慣などによってコミュニケーションのあり方が異なることを知る。
8	チームワークの重要性を例示して説明できる。
9	演習に参加し、協調的態度で役割を果たす。
10	様々な援助方法の特色を知る。

回数	担 当	内 容	対応 (SBOs)
1	土屋、高梨、宮川	人間関係の心理	1
2	//	臨床的コミュニケーション:ラポールの形成	1, 2, 3
3	//	共感と受容の心理	3
4	//	コミュニケーションの構成要素	6
5	//	臨床的コミュニケーション:アクティブ・リスニング	4, 5, 9
6	//	医療における人間関係	7、8
7	//	模擬病棟での患者体験	5, 9
8	//	臨床的コミュニケーション: 共感的理解の表現	4, 9
9	//	臨床的コミュニケーション:質問のスキル	5, 9
10	//	ファーマシューティカル・コミュニケーション 1	3、4、5、10
11	//	ファーマシューティカル・コミュニケーション2	3、4、5、10

 \mathbb{IV}

回数	担 当	内 容	対応 (SBOs)
12	//	ロールプレイングによるフィードバック学習 その 1	総合
13	//	ロールプレイングによるフィードバック学習 その2	総合

授業で行っている工夫: 患者と薬剤師役割のロールプレイングにより、コミュニケーションに関する体験的理解を促す。 模擬病棟での患者体験により共感的態度の形成を試みる。

モデル・コアカリ: A ヒューマニズムについて学ぶ (3) 信頼関係の確立を目指してキュラムとの関連

成績評価方法: 1) 形成的評価 a) 知識: 講義のまとめと感想、演習シートを提出する。

b) 技能:カウンセリングスキルを学ぶ

c) 態度:受講態度(出席状況等)により評価する。

2) 総括的評価 a) 知識: レポート提出 2回

b) 技能: カウンセリングスキルを実行・分析し適切に応用する c) 態度: 受講態度(出欠状況等)により総合的に評価します。

教 科 書:適宜資料を配布します

参 者 書: 自己カウンヤリングとアサーションのすすめ 平木典子 金子書房

薬剤師・薬学生のための実践 医療コミュニケーション学Q&A

監修 緒方宏泰 著 町田いづみ じほう

はじめての医療面接 斉藤清二 医学書院

オフィスアワー: 土屋明美 いつでも可。ただしメールで予約してください。 研究2号館407号室

所 属 教 室:土屋明美 医療人間関係学研究室

教員からの一言: 積極的に演習に参加して、心と言葉を大切にするコミュニケーションスキルの体験的理解を深めてください。

法 学 Jurisprudence

学 年 第1・2学年 科目分類 選 択 前期・後期 前期・後期 単 位 1

非常勤講師 西迫 大祐

学習目標 (GIO)

憲法の使命は、国民の権利と安全を守ることにあります。しかしながら、18世紀から現在にいたるまで、憲法はさまざまな試練を受けてきました。その試練に対抗しながら、憲法は少しずつその形を変えてきています。最近では東ティモール、アフガニスタン、イランなどで新たに憲法が制定されていますし、日本でも憲法の改正が議論になっており、皆さんも近い将来、改正の是非を問う国民投票に一票を投じることになるかもしれません。このような動きのなかで、憲法が生まれてから現在までどのような運命をたどってきたのか知ることは重要なことでしょう。この講義では、その歴史と問題点を見ながら、どのようにわたしたちの権利と安全を守るべきなのか、皆さんと一緒に考えてみたいと思います。

行動目標 (SBOs)

1	法と何か?憲法とは何か?について解説します。
2	イギリス、アメリカ、フランスで、革命とともに誕生した憲法はどのような内容だったのか見ていきます。
3	南米の独立と憲法の移植が何をもたらしたのかを検討します。
4	奴隷制の廃止にもかかわらず、奴隷制がなくならなかったことの理由を見てみます。
5	ディズレーリが定めた民主主義のルールについて解説しながら、民主主義について考えてみます。
6	日本に初めて誕生した憲法の内容と問題点を確認します。
7	社会保障という制度の成立と、その背後にあるリスクや連帯主義について解説します。
8	最も民主的で斬新だと言われたワイマール憲法の内容と、問題点を見てみます。
9	高貴な実験と言われた禁酒法は、なぜ憲法によって保証されていたのかを考えてみます。
10	平和条約は平和を創りだすことができたのか?日本国憲法の原点について解説します。
11	憲法違反とも言われているアメリカのニューディール政策について検討します。
12	ナチスはなぜ民主主義国家に誕生したのか?憲法と権力の関係を見てみます。
13	戦後に誕生したドイツ共和国憲法とフランス共和国憲法について見てみます。
14	同じく戦後に誕生した日本国憲法の誕生と平和主義について解説します。
15	公民権運動を見ながら、なぜ人種差別は憲法違反ではなかったのかを考えてみます。
16	ソビエト憲法とマッカーシズムについて検討します。
17	これからの世界と憲法について考えてみます。

回数	担 当	内 容
1	西迫	イントロダクション
2	//	憲法の誕生
3	//	ラテンアメリカの独立と憲法
4	//	奴隷制の廃止と公民権の制定

回数	担 当	内 容
5	//	ディズレーリと民主主義
6	//	大日本帝国憲法
7	//	生きる権利という考え
8	//	ワイマール憲法
9	//	禁酒法
10	//	ケロッグ=ブリアン協定
11	//	ニューディール政策
12	//	ナチスとワイマール憲法
13	//	第二次世界大戦後の世界(1): ドイツとフランス
14	//	第二次世界大戦後の世界 (2): 日本
15	//	ソビエト憲法と冷戦
16	//	冷戦後の世界

授業で行っている工夫: 授業では、できるだけ平易な言葉で話すよう心掛け、用語や詳しい説明は配付するプリント等で補うことにしています。

成績評価方法:主に学期末試験(1問論述:問題は事前に示します)の結果によります。

教 書:特に指定しません。適宜レジュメや資料を配布します。

参考書:同上。

オフィスアワー: 講義の前後 講義室

特 記 事 項:※上記「授業内容」は骨組みのみ書いていますが、憲法の下で生じる諸事象にふれるなかで他の 法分野ついても取り上げます。例示としては、戦争と国際法、犯罪・治安と刑事法、医療と法

法分野ついても取り上げます。例示としては、戦争と国際法、犯罪・治安と刑事法、医療と法など。

※順序・内容が多少変わる場合があります。

教員からの一言:とくに年号や条文を憶える必要はありません。

なにが問題なのか、なぜそうなったのか、どうすればよいのかなどを考えながら講義を聞いてもらえればと思います。

情報リテラシー Information Literacy II

全年 第1学年 科目分類 選択 前期·後期後期

教 授 **土橋** 朗 医薬品情報解析学教室 准教授 **小杉 義幸** 機能性分子設計学教室

学習目標 (GIO)

アウトラインプロセッシングに基づく文書作成や、意思決定活動に向けた表計算ソフトウェアの利用、分子モデリング、グラフィクスプログラミング、表現ツールとしてのWeb活用、医療情報に対する秘匿や認証の方法、構造化文書の作成とインターネットへの公開などInformation and Communication Technology (ICT) への理解を深め、その実践能力を身に付ける。

単 位

1

▋行動目標 (SBOs)

1	コンピュータソフトのアウトライン機能について説明できる。
2	ワードプロセッサのアウトライン機能を用いて、長い文書の作成と文書の構成が変更できる。
3	Desk Top Publishing(DTP)に必要な技術について説明できる。
4	表計算ソフトウェアを用いて汎用的な関数処理や乱数を用いた基礎的なシミュレーションを行うことができ る。
5	データベース機能を用いてデータの集計処理と視覚化を行い、基礎的なデータマイニングを行うことができ る。
6	ChemBioOffice を用いて有機化合物をモデリングし、その安定コンホマーを分子力学法により探索することができる。
7	ChemBioOffice を用いて有機化合物をモデリングし、分子動力学法により分子運動をシミュレーションすることができる。
8	プロテインデータバンク(PDB)からタンパク質データをダウンロードし、ChemBioOfficeを用いて描画 することができる。
9	グラフィクスプログラム言語であるDesign by Numbers(DBN)を用いて画像をプログラミングすることができる。
10	HTMLによる文書の表現方法を理解し、文書構造に則したWebページデータの作成ができる。
11	Webシステムの仕組みを理解し、FTPを使ってWebページデータをWebサーバに転送できる。
12	暗号化ソフトウエア(PGP)を用いて情報の秘匿と認証の仕組みを理解し、公開鍵をインターネット上に設置することができる。
13	HTMLとXMLの文書構造と文書型定義を説明できる。
14	医薬品に関する XML 形式のデータを作成し、XSLT と CSS の仕組みを使ってインターネット上に公開する ことができる。

回数	担 当	内 容	対応 (SBOs)
1	小杉	計算ソフトウェアの高度の利用法(1)	4、5
2	//	計算ソフトウェアの高度の利用法(2)	5
3	//	ワードプロセッサの高度の利用法(1)	1, 2, 3
4	//	ワードプロセッサの高度の利用法(2)	1, 2, 3
5	土橋	ChemBioOfficeを使って分子モデリングを学ぶ(1)	6

XI 実習科目

回数	担 当	内 容	対応 (SBOs)
6	//	ChemBioOfficeを使って分子モデリングを学ぶ(2)	6、7
7	//	ChemBioOfficeを使って分子モデリングを学ぶ(3)	6, 8
8	//	Design by Numbers (DBN) を使ってプログラムを読む、 書く (1)	9
9	//	Design by Numbers (DBN) を使ってプログラムを読む、 書く (2)	9
10	小杉	インターネットの利用(1)	10, 11
11	//	インターネットの利用 (2)	12
12	//	XMLを学ぶ(1)	13、14
13	//	XMLを学ぶ(2)	13、14

授業で行っている工夫:情報リテラシーⅡは演習を主体とし、各テーマに沿って操作手順を示したプリントを作成し、演習を行っている。また、各テーマ終了時に課題を課し、各自でPC活用の習熟度を評価できるようにしている。

すべての講義プリントをWebClassで公開し、一部の課題を除き、課題はWebClassに提出させている。また、出席カードを用いて講義への感想や質問を収集し、次回講義にて回答を行っている(土橋)。

講義資料と課題作成用のデータをWebClassから利用できます。また、課題の多くはWebデータの作成なので、薬学部Webサーバ(woden)にアップロードする方法で提出します(小杉)。

モデル・コアカリ: C15 薬物治療に役立つ情報 (1) 医薬品情報キュラムとの関連 主に薬学準備教育ガイドラインF(7) ITに対応

成 **績 評 価 方 法**: 1) 形成的評価 a) 知識: b) 技能:演習時間内に、PC操作の手法についてこまめにフィードバックする。

2) 総括的評価 a) 知識:単位認定課題の内容と提出状況、出席状況を加味して総合的に評価する。 b) 技能:知識に同じ。なお、出席不良者(1/3以上の欠席者) および課題提出不良者(1/3 以上の未提出)に対しては単位を認定しない場合がある。

教 科 書: 各テーマに沿って操作手順を示したプリントを作成している。

参 **考** 書:特に指定しない。

オフィスアワー: 土橋 朗 特に設定しませんが、できれば前もって予約をしてください。

医薬品情報解析学教室 研究2号館2階206号室

小杉義幸特に設定しませんが、できれば前もって予約をしてください。

DR棟4階リサーチセンター研究室2

所属教室: 土橋朗 医薬品情報解析学教室 研究2号館2階206号室

小杉義幸 機能性分子設計学教室 Office:DR棟4階リサーチセンター研究室2

XI 実習科

健康スポーツ

科目分類

選 択

Health and Physical Education

前期・後期

准教授 與那 正栄

第1学年

(GIO)

年

生涯にわたって健康で活力に満ちた質の高い生き方を確立するために、スポーツ実践を通じて、 身体運動に関する科学的知識を修得することは大切です。この授業で各種スポーツの基本的技術 を修得し、生涯スポーツの実践能力を身につけて下さい。

前

期

単 位

1

行動目標 (SBOs)

	1	身体活動を通じて協力して行動することの大切さを理解する。
2 競技ルールを遵守することで社会における規則の大切さを理解する。		競技ルールを遵守することで社会における規則の大切さを理解する。
3 生涯スポーツの実践能力を修得する。		生涯スポーツの実践能力を修得する。

▋授業内容

回数	担 当	内 容	対応 (SBOs)
1~13	與那	硬式テニス(男子・女子)	1~3
1~13	田島	卓球(女子)	1~3
1~13	飯田	グランド種目 (男子)	1~3
1~13	竹川	体育館種目(女子)	1~3
1~13	高寄	体育館種目(男子)	1~3
1~13	鈴木	エアロビックダンス、ヨガ(女子)	1~3
1~13	坂尾	卓球、体力トレーニング(男子)	1~3

授業で行っている工夫: 生涯スポーツとしての位置付けを重要視し、将来的に健康の保持増進を計るための指導を取り入

成績評価方法:與那·田島·高寄·鈴木·飯田·竹川·坂尾 A=出席率85%以上 B=84%~75% C=74%~60%D=60%未満

オフィスアワー: 與那 月曜日以外、原則的に可。 保健体育学研究室 体育館3階

所 室:與那 保健体育学研究室

特 記 項:授業内容

> 履修申請時に、体育館種目(バスケット・バレー・バドミントン)*・グランド種目(男子一サッ カー・ソフトボール)・硬式テニス・卓球(男子)**・エアロビックダンス・ヨガ+卓球(女子) ***の4つに分類して、募集する(雨天の場合は、体育館種目とする)。

- * 月毎に種目を変えて行なう予定である。
- ** 男子卓球は4、5時限目で体力トレーニングと組み合わせて行なう。
- *** 女子は卓球とエアロビックダンス・ヨガの組み合わせとなる。4時限目に卓球を行なっ た学生は、5時限目にエアロビックダンス・ヨガとなる。逆に4時限目にエアロビックダンス・ ヨガを行なった学生は、5時限目に卓球となる。募集人員は64名とし、最初の授業時間におい て2つのクラスに分ける。

英語検定 I

English for Proficiency Tests I

学年 第1・2学年 科目分類 選択 前期・後期前期 単位 1

非常勤講師 満留 敦司

非常勤講師 首藤理彩子

非常勤講師 神田 玲子

学習目標 (GIO)

就職の際にも重要なTOEICや英検などの英語能力検定試験に対応する基礎力を養うために、問題演習を行って設問形式に慣れながら、リスニング力と速読力を養い、頻出語彙と文法事項を取得する。目標としては、全員がTOEIC550点あるいは英検二級、上位者はTOEIC700点以上あるいは英検準一級を目指す。着実な語彙力と文法知識を基盤とした上で、ナチュラルスピードの英文を聞き取り、また、素早く文章の大意を把握する訓練を積む。

┃ 行動目標 (SBOs)

1	各種検定試験(TOEIC、英検、TOEFL)の特徴を理解する。	
2	ラジオ講座の活用法を理解する。	
3	検定試験の問題形式と傾向を理解する。	
4	まとまった文章を聞き取ることができる。	
5	まとまった文章を速読して内容を理解できる。	
6	検定試験に必要な文法事項を習得する。	
7	検定試験に必要な語彙を習得する。	

授業内容

回数	内 容	対応 (SBOs)
1	前期授業のイントロダクション	1, 2
2~12	前期テキストの演習	3~7
13	前期試験	3~7

授業で行っている工夫:大学内でTOEIC試験を定期的に実施しているので、その結果を分析し、学生の苦手とする部分を

重点的に指導する。

モデル・コアカリ: F(2) (薬学英語入門) キュラムとの関連

成 績 評 価 方 法: 1) 形成的評価 a) 知識:演習問題を繰り返し行う。

c) 態度:出席、提出物、受講態度を評価する。なお、出席不良者に対しては定

期試験受験停止の措置を講じることがあるので注意すること。

2) 総括的評価 a) 知識: 定期試験、出席点、提出物を総合的に評価する。

c) 態度:繰り返しの形成的評価で改善が認められれば合とする。なお、受講者

は積極的に英検やTOEICを受験するように心がけて欲しい。

教 科 書:別に指示する。

参考書:『上級者へのTOEIC Test英単語』(Z会出版編集部編、Z会)

「ビジネス英語(入門、実践)」等のラジオ講座

オフィスアワー: 非常勤講師 薬学事務課にて 薬学部事務にて要予約。

VIII

XI

1

英語検定Ⅱ

満留

年 第1・2学年 科目分類 選択 前期・後期 後

敦司

非常勤講師 首藤理彩子

English for Proficiency Tests II

柼 非常勤講師 神田 玲子

単

(GIO)

非常勤講師

就職の際にも重要なTOEICや英検などの英語能力検定試験に対応する基礎力を養うために、問題 演習を行って設問形式に慣れながら、リスニング力と速読力を養い、頻出語彙と文法事項を取得 する。目標としては、全員がTOEIC550点あるいは英検二級、上位者はTOEIC700点以上ある いは英検準一級を目指す。着実な語彙力と文法知識を基盤とした上で、ナチュラルスピードの英 文を聞き取り、また、素早く文章の大意を把握する訓練を積む。

期

▋行動目標 (SBOs)

1	各種検定試験(TOEIC、英検、TOEFL)の特徴を理解する。
2	ラジオ講座の活用法を理解する。
3	検定試験の問題形式と傾向を理解する。
4	まとまった文章を聞き取ることができる。
5	まとまった文章を速読して内容を理解できる。
6	検定試験に必要な文法事項を習得する。
7	検定試験に必要な語彙を習得する。

授業内容

回数	内 容	対応 (SBOs)
1	後期授業のイントロダクション	1, 2
2~13	後期テキストの演習	3~7
14	後期試験	3~7

授業で行っている工夫: 大学内でTOEIC 試験を定期的に実施しているので、その結果を分析し、学生の苦手とする部分を 重点的に指導する。

モデル・コアカリ: F(2)(薬学英語入門)

キュラムとの関連

成 績 評 価 方 法:1) 形成的評価 a) 知識:演習問題を繰り返し行う。

c) 態度: 出席、提出物、受講態度を評価する。なお、出席不良者に対しては定 期試験受験停止の措置を講じることがあるので注意すること。

2) 総括的評価 a) 知識: 定期試験、出席点、提出物を総合的に評価する。

c) 態度:繰り返しの形成的評価で改善が認められれば合とする。なお、受講者

は積極的に英検やTOEICを受験するように心がけて欲しい。

教 科 書:別に指示する。

書:『上級者へのTOEIC Test英単語』(Z会出版編集部編、Z会)

「ビジネス英語(入門、実践)」等のラジオ講座

オフィスアワー: 非常勤講師 薬学事務課にて 薬学部事務にて要予約。

英会話 I

English Conversation I

選択

学年第1・2学年科目分類准教授エリックスカイヤー

学習目標 (GIO) The ability to speak English is becoming more and more of a necessity for working professionals in Japan. The aim of the class is to help students with limited speaking skills to become more comfortable and more fluent. Possible ways of learning include: using a textbook, using and making videos, music, global issues, debate, watching DVDs, and public speaking.

前期・後期

前期

単 位

1

行動目標 (SBOs)

成績評価方法: Class attendance, participating/speaking in class, completion of homework, and preparation for discussion will be taken into consideration.

教 書:別に指示する。

参考 書: Each student must have a good dictionary.

オフィスアワー: Eric M. Skier いつでも可。

所属教室: Eric M. Skier 第三英語研究室 研究2号館5階

英会話I

English Conversation I

学 年 第1・2学年 科目分類 選 択 前期・後期 前 期 単 位 1

准教授 エリック スカイヤー

学習目標 (GIO) The ability to speak English is becoming more and more of a necessity for working professionals in Japan. The aim of the class is to help students with limited speaking skills to become more comfortable and more fluent. Possible ways of learning include: using a textbook, using and making videos, music, global issues, debate, watching DVDs, and public speaking.

▋行動目標 (SBOs)

成績評価方法: Class attendance, participating/speaking in class, completion of homework, and preparation for discussion will be taken into consideration.

教科書:別に指示する。

参考書: Each student must have a good dictionary. THIS CLASS WILL BE IN ENGLISH ONLY!

オフィスアワー: Eric M. Skier いつでも可。

所属教室: Eric M. Skier 第三英語研究室 研究2号館5階

特記事項: The English-only policy applies to English Conversation I on Tuesdays and Fridays only.

English Conversation I 選択

第1学年 科目分類 非常勤講師 ドナ マッキニス

学習目標 (GIO)

年

The ability to speak English is becoming more and more of a necessity for working professionals in Japan.

前 期 単 位

1

前期・後期

The first part of this course is based on the award - winning United Nations video series "What's Going On?". Each video segment looks at the lives of children and young people around the world. We will examine children's issues and what is being done to make children's lives better around the world. Students will have the chance to read about, learn more deeply, and discuss real global issues that concern us all. We will start here...

http://www.un.org/works/goingon/labor/goingon_labor.html

In the latter part of this course, we will watch a feature film that relates to some of the issues that we have discussed so far.

Schedule (subject to change depending on students' interests and motivations)

行動目標 (SBOs)

授業内容

回数	内 容
1~4	Children in Brazil
5~7	Children in India
8~10	Children in Mongolia
11~13	Film to be announced
14~15	Conclusion and Reflections on Learning (Reports or mini-presentations)

成績評価方法: Class attendance, participating/speaking in class, completion of homework, and preparation for discussion will be taken into consideration.

書: Each student must have a good dictionary.

オフィスアワー: Donna McInnis 薬学事務課にて。 薬学事務課に要予約。

英会話I(科学英語コミュニケーション)

English Conversation I (English Communication for Science)

学年 第1・2学年 科目分類 選択 前期・後期 前期 単位

非常勤講師 マイケル ライリー

学習目標 (GIO)

The purpose of this English Communication class is to assist students in expanding their scientific vocabulary through the use of the text as well as supplementary materials. The focus will be on communication in English utilizing the discussion points related to each unit. Group discussions will be an integral component of the course as well as individual presentations based on topics students select from the discussion points.

1

行動目標 (SBOs)

This semester's topics will focus on the biological and life science areas. Topics will include cellular structure, nutrition, health, reproduction, disease, and ecology.

1	Introduction & orientation to the course
2	Made from cells; making & using food
3	Flowers; fruits & seeds
4	Organs of the body; bones, joints & muscles
5	Dealing with food; the human engine
6	The lungs & breathing; making human life
7	Growing to be born; the food you need
8	Germs & diseases; healthy living
9	Variation; sorting into groups
10	Living places; features for living
11	Chains & webs; looking at matter
12	Hot & cold; particles of matter
13	Elements, atoms & compounds
14	Final presentations

回数	内 容	対応 (SBOs)
1	Introduction & orientation to the course	1
2	Made from cells; making & using food	2
3	Flowers; fruits & seeds	3
4	Organs of the body; bones, joints & muscles	4
5	Dealing with food; the human engine	5
6	The lungs & breathing; making human life	6

XI 実習科目

回数	内 容	対応 (SBOs)
7	Growing to be born; the food you need	7
8	Germs & diseases; healthy living	8
9	Variation; sorting into groups	9
10	Living places; features for living	10
11	Chains & webs; looking at matter	11
12	Hot & cold; particles of matter	12
13	Elements, atoms & compounds; Final presentations	13、14

授業で行っている工夫: 科学の諸分野について、ネイティブ講師が英語で読み、書き、話し、聞く総合的訓練を行う。

モデル・コアカリ: F(2)(薬学英語入門)

キュラムとの関連

成績評価方法: Students will be evaluated according to their level of preparation, participation, and

final presentations at the end of each semester.

教 書: Foundation Science to 14 (Stephen Pole, Oxford University Press, 2001.)

参考書: Each student must have a good dictionary.

オフィスアワー:講師控室にて。 薬学事務課に要予約。

特 記 事 項:*注意:この英会話クラスでは、とくに科学的な英語のコミュニケーション能力を養うことに重点をおきます。

英会話Ⅱ

English Conversation II

学年 第1・2学年 科目分類 選択 前期・後期後期 単位 1

准教授 エリック スカイヤー

学習目標 (GIO) The ability to speak English is becoming more and more of a necessity for working professionals in Japan. The aim of the class is to help students with limited speaking skills to become more comfortable and more fluent. Possible ways of learning include:using a textbook, using and making videos, music, global issues, debate, watching DVDs, and public speaking.

成績評価方法: Class attendance, participating/speaking in class, completion of homework, and preparation for discussion will be taken into consideration.

教 科 書:別に指示する。

参考 書: Each student must have a good dictionary.

オフィスアワー: Eric M. Skier いつでも可。

所属教室: Eric M. Skier 第三英語研究室 研究2号館5階

英会話Ⅱ

English Conversation II

学年 第1·2学年 科目分類 選択 前期·後期後期 単位 1

准教授 エリック スカイヤー

学習目標 (GIO) The ability to speak English is becoming more and more of a necessity for working professionals in Japan. The aim of the class is to help students with limited speaking skills to become more comfortable and more fluent. Possible ways of learning include: using a textbook, using and making videos, music, global issues, debate, watching DVDs, and public speaking.

成績評価方法: Class attendance, participating/speaking in class, completion of homework, and preparation for discussion will be taken into consideration.

教科書:別に指示する。

参考 書: Each student must have a good dictionary. THIS CLASS WILL BE ENGLISH ONLY!

オフィスアワー: Eric M. Skier いつでも可。

所属教室: Eric M. Skier 第三英語研究室 研究2号館5階

特記事項: The English-only policy applies to English Conversation II on Wednesdays 5th period only.

English Conversation II 選択

科目分類

第1・2学年 非常勤講師 ドナ マッキニス

(GIO)

The ability to speak English is becoming more and more of a necessity for working professionals in Japan.

後 期 単 位

1

前期・後期

The first part of this course is based on the award-winning United Nations video series

"What's Going On?". Each video segment looks at the lives of children and young people around the world. We will examine children's issues and what is being done to make children's lives better around the world. Students will have the chance to read about, learn more deeply, and discuss real global issues that concern us all. In the latter part of this course, we will view a feature film that relates to some of the issues that we have discussed so far.

Schedule (subject to change depending on students' interests and motivations)

成績評価方法: Class attendance, participating/speaking in class, completion of homework, and preparation for discussion will be taken into consideration.

書: Each student must have a good dictionary.

オフィスアワー: Donna McInnis 講師控室にて。 薬学事務課に要予約。

英会話Ⅱ(科学英語コミュニケーション)

English Conversation II (English Communication for Science)

学年 第1・2学年 科目分類 選択 前期・後期 後期 単位

非常勤講師 マイケル ライリー

学習目標(GIO)

The purpose of this English Communication class is to assist students in expanding their scientific vocabulary through the use of the text as well as supplementary materials. The focus will be on communication in English utilizing the discussion points related to each unit. Group discussions will be an integral component of the course as well as individual presentations based on topics students select from the discussion points.

1

行動目標 (SBOs)

This semester's topics will focus on basic chemistry & physical science vocabulary in English. Topics such as mixtures, solutions, compounds, electricity & energy will be discussed.

1	Mixtures & solutions; separating mixtures
2	Acids & alkalis; changing materials
3	Burning; more about metals
4	Air; water
5	Rock, stone, & soil; looking at rocks
6	Electricity in action; a simple circuit
7	Batteries & bulbs; magnets & electromagnets
8	Forces; pressure
9	Turning forces; moving & stopping
10	Energy; storing & changing energy
11	Energy for electricity; energy supplies
12	How the world gets its energy; making sounds
13	Hearing sounds; rays of light
14	Final presentations

回数	内 容	対応 (SBOs)
1	Mixtures & solutions; separating mixtures	1
2	Acids & alkalis; changing materials	2
3	Burning; more about metals	3
4	Air; water	4
5	Rock, stone, & soil; looking at rocks	5
6	Electricity in action; a simple circuit	6

Х

	対応(SBOs)
Batteries & bulbs; magnets & electromagnets	7
Forces; pressure	8
Turning forces; moving & stopping	9
Energy; storing & changing energy	10
Energy for electricity; energy supplies	11
How the world gets its energy; making sounds	12
Hearing sounds; rays of light	13
Final presentations	14
	Forces; pressure Turning forces; moving & stopping Energy; storing & changing energy Energy for electricity; energy supplies How the world gets its energy; making sounds Hearing sounds; rays of light

授業で行っている工夫: 科学の諸分野について、ネイティブ講師が英語で読み、書き、話し、聞く総合的訓練を行う。

モデル・コアカリ: F(2)(薬学英語入門)

キュラムとの関連

成績評価方法: Students will be evaluated according to their level of preparation, participation, and final presentations at the end of each semester.

教 書: Foundation Science to 14 (Stephen Pole, Oxford University Press, 2001.)

参考書: Each student must have a good dictionary.

オフィスアワー:講師控室にて。 薬学事務課に要予約。

特 記 事 項:*注意:この英会話クラスでは、とくに科学的な英語のコミュニケーション能力を養うことに重 点をおきます。

ドイツ語 I German I

学 年 第1·2学年 科目分類 選 択 前期·後期 前 期 単 位 1

非常勤講師 坪谷 準治

非常勤講師 渡辺 幸子

学習目標 (GIO)

ドイツ語の最初歩をアルファベットから学ぶ。日本語はもちろん、英語との類似点や相違点を明らかにしながら、基本レベルのドイツ語文法を理解し、ドイツ語で簡単なコミュニケーションをはかれるようにする。また、ドイツ語やドイツ語圏の文化について理解を深めることをあわせて目標とする。

▋行動目標 (SBOs)

1	ドイツ語の発音の特徴を理解し、未知の単語もつづりを見て発音できるようになる。
2	簡単な自己紹介や買い物など、初歩的な日常会話を習得する。
3	ドイツ語の初級文法の仕組みを体系的に理解する。
4	ドイツ語技能検定4級に合格できる程度の基礎的総合力をつける。

授業内容

回数	内 容	対応 (SBOs)
1	前期授業のイントロダクション/アルファベット	1
2	つづりと発音/あいさつ	1, 4
3~4	自己紹介/人称代名詞、規則動詞の現在人称変化、動詞の位置	2、3、4
5~6	贈り物をする/名詞の性と格、人称代名詞と疑問代名詞の格変化	2、3、4
7~8	時刻の表現/不規則動詞の現在人称変化、複数形	2、3、4
9~10	家族の紹介/冠詞類、従属接続詞	2、3、4
11~12	休暇/前置詞、複合動詞	2、3、4
13	期末テスト	

授業で行っている工夫: 板書や補足プリントによる丁寧な文法解説と問題演習、耳からも発音を習得できるよう繰り返しをいとわない発声と聞き取り練習、ドイツ語圏への関心を高めるための映像資料の活用。

成績 評価方法: 1) 形成的評価 a: 知識 小テスト、提出課題、毎回の宿題などにより行う。

c:態度 受講態度(出席状況など)により評価する。

2) 総括的評価 a:知識 定期試験、平常点(出席、小テスト、提出物)により総合的に評価する。

c:態度 受講態度(出席状況など)により評価する。

教 科 書: 西村祐子、ルドルフ・ペトリック著 『行ってみたいなドイツ』(郁文堂)

参考書:辞書と合わせて初回の授業で紹介する。

オフィスアワー: 水曜午後 薬学事務課にて **特 記 事 項**: 独和辞典は毎回持参のこと。

1

ドイツ語 I German II

学 年 第1·2学年 科目分類 選 択 前期·後期 後 期 単 位

非常勤講師 坪谷 準治 非常勤講師

学習目標 (GIO) ドイツ語 I の学習内容を定着・発展させ、ドイツ語で簡単なコミュニケーションをはかれるようにする。また引き続きドイツ語圏の文化について理解を深めることをあわせて目標とする。

渡辺 幸子

┃ 行動目標 (SBOs)

1	ドイツ語の初級文法の仕組みを体系的に理解する。
2	自分の意志や希望を伝え、出来事を報告するなどの易しい会話表現を習得する。
3	ドイツ語技能検定4級に合格できる程度の基礎的総合力をつける。

授業内容

回数	内 容	対応 (SBOs)
1	後期授業のイントロダクション/前期の復習	1、3
2~4	ドイツの食/話法の助動詞、未来の助動詞、命令	1、2、3
5~6	感情や状態の表現/形容詞、序数	1、2、3
7~8	趣味/再帰表現、不定詞	1、2、3
9~10	グリム童話/比較、3基本形、過去	1, 2, 3
11~13	過去の表現/現在完了、分詞	1, 2, 3
14	期末テスト	

授業で行っている工夫: 板書や補足プリントによる丁寧な文法解説と問題演習、耳からも発音を習得できるよう繰り返し

をいとわない発声練習、ドイツ語圏への関心を高めるための映像資料の活用

成 績 評 価 方 法:1) 形成的評価 a:知識 小テスト、提出課題、毎回の宿題などにより行う。

c:態度 受講態度(出席状況など)により評価する。

2) 総括的評価 a:知識 定期試験、平常点(出席、小テスト、提出物)により総合的に評価する。

c:態度 受講態度(出席状況など)により評価する。

教 書: 西村祐子、ルドルフ・ペトリック著『行ってみたいなドイツ』(郁文堂)

オフィスアワー:水曜午後 薬学事務課にて 特 記 事 項:独和辞典は毎回持参のこと。 \blacksquare

中国語 I Chinese I

学年 第1・2学年 科目分類 選択 前期・後期前期 単位 1

非常勤講師 桑野 弘美

学習目標 (GIO) 中国語(普通話)の発音・声調・発音表記および初歩的文法事項を理解・習得する。

行動目標 (SBOs) 各回の学習事項に基づき、簡単な読み書き・会話が行なえる。

授業内容

回数	内 容
1	授業の説明/第1課:中国語とは・単母音・声調
2~5	第 1 課続き〜第4課:中国語の発音と発音表記について
6	第5課:人称代名詞・名前の言い方・挨拶
7~8	第6課:指示代名詞·動詞述語文·疑問文·助詞"的"·副詞"也""都"
9~10	第7課:形容詞述語文・名詞述語文・反復疑問文・日付の言い方
11~12	第8課:指示代名詞(場所)·動詞"有"·動詞"在"·方位詞·量詞
13	期末試験

成績評価方法:・定期試験(持ち込み不可)の結果と平常点(出席状況·授業態度・小テストの結果〈実施した場合〉・ 課題の提出状況〈実施した場合〉)を総合して評価する。

- ・教室に来ているだけで授業に参加していない者は欠席とみなす場合があるので注意すること。 また、受講状況不良のものに対しては受験停止の措置などを講ずる場合があるので注意すること。 と。
- **教 書**:「身近でコミュニケーション 留学生と話そう」(武永尚子・永井鉄郎・南雲大吾 著/センゲー ジラーニング株式会社)
- 特 記 事 項:・中国語をはじめて学ぶ人を対象とした授業です。(学習経験者・母語話者等には勧められません。)
 - · 各自教科書を購入して持参して下さい。
 - ・授業では各自声を出して発音練習をしたり、文章を音読することも求められますので承知のう えで受講して下さい。

VIII

中国語I Chinese II

学年 第1·2学年 科目分類 選択 前期·後期後期 単位 1

非常勤講師 桑野 弘美

学習目標 (GIO) 中国語(普通話)の発音・声調・発音表記および初歩的文法事項を理解・習得する。

行動目標 (SBOs)

各回の学習事項に基づき、簡単な読み書き・会話が行なえる。

授業内容

回数	内 容	
1~3	第9課:動詞述語文・選択疑問文・時刻の言い方/第10課:助動詞・「~しましょう」と「~でしょう?」	
4~6	復習/第11課:前置詞・時間量/第12課:連動文・進行の表現	
7	第12課までの復習	
8~10	復習/第13課:比較表現・二重目的語/第14課:前置詞・動詞の重ね型・持続の表現復習	
11~13	復習/第15課:助詞"了"について・数量補語/第16課:経験の表現・方向補語	
14	期末試験	

成 績 評 価 方 法 : · 定期試験 (持ち込み不可) の結果と平常点 (出席状況 · 授業態度 · 小テストの結果 〈実施した場合〉) を総合して評価する。

・教室に来ているだけで授業に参加していない者は欠席とみなす場合があるので注意すること。 また、受講状況不良のものに対しては受験停止の措置などを講ずる場合があるので注意すること。

教 科 書:『身近でコミュニケーション 留学生と話そう』(武永尚子・永井鉄郎・南雲大吾 著/センゲー ジラーニング株式会社)

特 記 事 項: 学んだことを身につけるには、授業のあとで各自よく復習することが必要です。

フランス語 I French I

学 年 第1・2学年 科目分類 選 択 前期・後期 前 期 単 位 1

准教授 信子 森本

学習目標 (GIO)

フランス語の運用能力の基礎を身につけるために、フランス語のしくみを一通り学習し、全体像 を理解する。日常的な内容の文章を読んだり聞いたりして理解する事ができ、自分の意思を伝え ることができる様になるために、文法の基礎を理解し、練習問題や会話の練習を通して、さまざ まな場面に応じた表現を身につける。

┃ 行動目標 (SBOs)

1	つづり字の規則がわかり発音できる
2	名詞の性と数がわかる
3	適切な冠詞を付けることができる
4	代名詞の区別ができる
5	提示表現を正しく使うことができる
6	動詞の活用ができる
7	形容詞を正しく使うことができる
8	基本文型がわかる
9	否定文を作ることができる
10	疑問文を作ることができる
11	所有形容詞を使い分けることができる
12	指示形容詞を使い分けることができる
13	数がわかる

回数	担 当	内 容	対応 (SBOs)
1	森本	第 1 課 フランス語の文字 フランス語の音 つづり字の読み方	1
2, 3	//	第2課 名詞の性と数 冠詞 voici, voilà、基数(1 – 10)	2, 3, 5, 13
4, 5	//	第3課 主語人称代名詞 動詞êtreとavoirの直説法現在 c'est, ce sont, il y a、基数(11 – 20)	4、5、6、13
6、7	//	第4課 第1群規則動詞(er動詞)の直説法現在 第2群規則動詞(ir動詞)の直説法現在 形容詞の性と数、形容詞の位置	6、7
8, 9	//	第5課 基本文型 否定形 不規則活用動詞 attendre, partir	6、8、9

X

回数	担当	内 容	対応 (SBOs)
10、11	//	第6課 疑問形 Oui, Non, Si 所有形容詞、不規則活用動詞 prendre, faire	6、10、11
12	//	第7課 指示形容詞 名詞と形容詞の女性形・複数形の特殊な形 不規則活用動詞 acheter, préférer	6、7、12
13	//	期末試験	

授業で行っている工夫:練習問題の豊富な教科書を使用して、説明をただ聞くだけではなく、自分の頭を使って答えを導

き出すよう工夫する。簡単な会話の練習をペアやグループで行い、授業に積極的に参加できるように指導する。こまめに小テストを行い、復習を取り入れながら授業を進め、予習、授業、復習といった、語学学習の基本的な方法を身につけさせ、将来の自己研さんに役立つよう指導する。

モデル・コアカリ: F-(1) 薬学領域の学習と並行して、人文科学を広く学び、知識を習得し、さまざまな考え方、キュラムとの関連 感じ方に触れ、物事を多角的にみる能力を養う。そして見識ある人間としての基礎を築くために、

感じ方に触れ、物事を多角的にみる能力を養っ。そして見識のる人間としての基礎を築くために、 自分自身についての洞察を深め、生涯にわたって自己研さんに努める習慣を身につける。

1.人の価値観の多様性が、文化・習慣の違いから生まれることを、実例を挙げて説明できる。

2.言語、歴史、宗教などを学ぶことによって、外国と日本の文化について比較できる。

3.文化・芸術に幅広く興味を持ち、その価値について討議する。

成績評価方法:1)形成的評価 a)知識:練習問題を多く解かせ、小テストを行って螺旋的に知識を定着させる。

2) 総括的評価 a) 知識: 定期試験、出席点、小テストを総合的に評価する。

教 科 書:『マ・グラメール』(小野ゆり子、村松マリ=エマニュエル著、白水社)

参考書:『プチロワイヤル仏和辞典』(旺文社)

『クラウン仏和辞典』(三省堂)

『新リュミエールフランス語』(森本、三野著、駿河台出版社)

『コレクション フランス語3 文法』(西村、曽我、田島著、白水社) 『フラ語入門、わかりやすいにもホドがある』(清岡智比古著、白水社)

オフィスアワー: 森本信子 月曜日 2:00~5:00 第4英語研究室 研究2号館609号室

所属教室: 森本信子 第4英語研究室 研究2号館609号室

教員からの一言:新しい言語を学ぶことは、新しいものの見方や考え方を知る第一歩です。楽しく学んでいきましょう!

フランス語 II French II

学 年 第1·2学年 科目分類 選 択 前期·後期 後 期 単 位 1

准教授 森本 信子

学習目標 (GIO)

フランス語の運用能力の基礎を身につけるために、フランス語のしくみを一通り学習し、全体像を理解する。日常的な内容の文章を読んだり聞いたりして理解する事ができ、自分の意思を伝えることができる様になるために、文法の基礎を理解し、練習問題や会話の練習を通して、さまざまな場面に応じた表現を身につける。

┃ 行動目標 (SBOs)

1	動詞の活用ができる
2	近接未来・近接過去の表現を使うことができる
3	疑問詞を使い分けることができる
4	比較級を使うことができる
5	最上級を使うことができる
6	命令形を使うことができる
7	非人称表現を使うことができる
8	直説法複合過去を使うことができる
9	目的補語人称代名詞、人称代名詞の強勢形を使うことができる

回数	担 当	内 容	対応 (SBOs)
1	森本	フランス語 I の復習 第8課 aller, venir の直説法現在 近接未来・近接過去 冠詞の縮約、不規則活用動詞 vouloir, pouvoir	1, 2
2, 3	//	第9課 疑問代名詞 疑問副詞 不規則活用動詞 connaître, savoir	1, 3
4、5	"	第10課 疑問形容詞 形容詞と副詞の比較級 形容詞と副詞の最上級、不規則活用動詞 commencer, voir	1、3、4、5
6、7	//	第11課 命令法 非人称構文 不規則活用動詞 dire, manger	1、6、7
8, 9	//	第12課 過去分詞 直説法複合過去	8
10, 11	//	第13課 人称代名詞の目的補語形 人称代名詞の強勢形	9
12、13	//	第14課 複合過去と目的補語人称代名詞 複合過去と過去分詞の一致(まとめ)	8, 9
14	//	期末試験	

必3 修年

選3択年

授業で行っている工夫:フランス語」に引き続き、自ら参加し考えながら答えを探す授業を展開する。

ペアやグループでの会話練習を通して、状況に応じた実用的なフランス語を身につけるよう指導 する。小テストによるフィードバックを毎回行い、予習、授業、復習の基本的な語学学習の方法 を定着させて、将来の自己研さんに役立つよう指導する。

キュラムとの関連

モデル・コアカリ: F- (1) 薬学領域の学習と並行して、人文科学を広く学び、知識を習得し、さまざまな考え方、 感じ方に触れ、物事を多角的にみる能力を養う。そして見識ある人間としての基礎を築くために、 自分自身についての洞察を深め、生涯にわたって自己研さんに努める習慣を身につける。

1.人の価値観の多様性が、文化・習慣の違いから生まれることを、実例を挙げて説明できる。

2.言語、歴史、宗教などを学ぶことによって、外国と日本の文化について比較できる。

3.文化・芸術に幅広く興味を持ち、その価値について討議する。

成績評価方法: 1) 形成的評価 a) 知識:練習問題を多く解かせ、小テストを行って螺旋的に知識を定着させる。

2) 総括的評価 a) 知識: 定期試験、出席点、小テストを総合的に評価する。

書:『マ・グラメール』(小野ゆり子、村松マリ=エマニュエル著、白水社) 科 教

参 考 書:『プチロワイヤル仏和辞典』(肝文社)

『クラウン仏和辞典』(三省堂)

『新リュミエールフランス語』(森本、三野著、駿河台出版社)

『コレクション フランス語3 文法』(西村、曽我、田島著、白水社) 『フラ語入門、わかりやすいにもホドがある』(清岡智比古著、白水社)

オフィスアワー: 森本信子 月曜日 2:00~5:00 第4英語研究室 研究2号館609号室

所属教室:森本信子第4英語研究室研究2号館609号室

教員からの一言:新しい文法事項が増えてきます。でも面白くもなってきます。丁寧に1つずつ押さえていきましょ う。

ゼミナール

Group Seminar in Selected Topics

学年 第1 笄棚~第3 笄 科目分類 選択 前期・後期 前期・後期 単位 1

薬学部教員

学習目標 (GIO)

優れた医療人となるためには、必修科目で学ぶ基本的な知識と技能、さらには態度に加え、世の中を取り巻くさまざまな話題、課題、見解などについて、豊富な知識を持ち、的確な見識を持って行動できるようになることが望まれる。ゼミナールは少人数クラス単位で実施する選択科目であり、科目を自らの興味で選んで履修することで自主性を養い、演習、グループ討論、プレゼンテーションなどの能動的な学習方法を実践することで、優れた医療人となるための技能や態度を醸成する。

▋授業内容

回数	担 当	内 容
1	 委員会メンバー	(前期ならびに後期開始前の時期:ゼミナールガイダンスとして実施) ゼミナールの 目指すもの.受動的学習と能動的学習.ゼミナール選択について
2-14	各ゼミナール担当者	シラバス(別冊)にて指定した内容
最終回	委員会メンバー	(前期ならびに後期開始前の時期:次期ゼミナールガイダンスと同時開催) ゼミナールで実施したアンケートのフィードバック

授業で行っている工夫: 1 ~ 3 年次に5 種類のゼミナールを選択することによって、得意分野を延ばし、不得意分野を克服し、まったく未知の分野に挑戦するなど、必修科目では味わえない、さまざまなことを吸収してくれることを期待しています。少人数、グループ学習を通して、問題解決能力、プレゼンテーション能力、コミュニケーション能力が徐々に醸成されてきます。 4 ~ 6 年次さらには社会で求められる重要な能力ばかりです。自らの判断で有益にすごしてもらいたいと願っています。

モデル・コアカリ: A 全学年を通して: ヒューマニズムについて考える キュラムとの関連 (1) 生と死 (2) 医療の担い手としての心構え (

- (1) 生と死、(2) 医療の担い手としての心構え、(3) 信頼関係の確立を目指して
- B イントロダクション
 - (1) 薬学への招待

特 記 事 項:概 要

ゼミナールは約90名の薬学部教員が各々1単位を開講する。テーマは各々の教員が指定する。 実施例を以下に示す。テーマならびに履修に関する関連事項はガイダンス時に説明する。受講時期は1年次後期から3年次後期までであり、5単位以上を履修する。集中講義形式を基本とし、前期または後期の実習のない週の午後3週間、合計6日間に実施することを基本とする。 これまで開講されたゼミナールのタイトルを以下に例示する。

(見ても光切り) 野 (悪文)(ほし) アの甘木的な(製質されたコフク・) トミ

1年次後期	物理ポセミナール(量子ガ子超々入内、楽剤師としての基本的な計算方法をマスターしよう、物理化学を楽しく学ぼう、物理化学を理解する)、化学系ゼミナール(ハードボイルドドラッグワンダーランド、ベーシック有機化学)、生物系ゼミナール(1年次前期の生物系科目の理解を深める、ヒトはパンのみで生きられるか、サプリメントの有効性を科学しよう、微生物を知ろう)、総合ゼミナール(病いと人間、病院薬剤師について)など
2年次前期	物理系ゼミナール(GC/MSで薬草の成分を分析してみる、日本薬局方を読みましょう)、化学系ゼミナール(ベーシックコース、アドバンスコース)、生物系ゼミナール(病気を知り薬を知り治療を考える、身近にある免疫反応の仕組みを考える、微生物と戦う、脳や神経系の働きや病気に関する科学的な記事や書物の理解に向けて)、総合ゼミナール(村上春樹を読み書き語る、薬を巡る話、DVDを作ろう・薬学生のための実用英語)など

VII

2年次後期	化学系ゼミナール(国家試験対応スペクトル解析演習)、生物系ゼミナール(医学・生物学の進歩に触れる)、薬・疾病ゼミナール(薬理学を学ぶために、日本の臓器移植・何が良くて何がわるいの)、創薬ゼミナール(新聞や雑誌の記事を通してくすりを考える)、総合ゼミナール(統計学の苦手意識をなくそう、薬のデータを集めよう、ビッグファーマのマーケティング戦略を読み解く、科学と人間、低体力者への適切な運動処方およびメタボリックシンドロームに対する予防を学ぼう、米国の薬局を見学しよう)など
3年次前期	薬・疾病ゼミナール (病気の予防と治療薬、病気と薬)、創薬ゼミナール (最近のDDS製剤を知る)、健康・環境ゼミナール (医薬品や化学物質による中毒事件を検証しよう、これからの日本人の食を考える)、総合ゼミナール (症例から見えてくるもの、市販薬を調べてみよう、子どもへの薬教育について考える、卒後教育講座に参加しよう) など
3年次後期	薬・疾病ゼミナール(これからの薬剤師に必要な問題解決能力を磨こう、泌尿器・婦人科疾患の治療)、創薬ゼミナール(専門薬剤師って何)、健康・環境ゼミナール(環境の保全や修復を目指す最近の実例を調べてみる、食の安全・安心を考える)、総合ゼミナール(医薬品の分子薬理的理解を目指して有機化合物を読み解いてみよう、医療安全に関わる薬剤師の役割を考える、医療制度と薬剤師業務、メタボってなんだ)など

教員からの一言: "選択"は自己責任で行う重要なアクションです。カリキュラムは必修科目が多いので、このようなアクションをする絶好のチャンスです。ガイダンス時に配布される資料を読みこなし最も学んでみたいゼミナールを選択してください。必修科目には無い醍醐味が味わえます。

基礎物理学集中講義

Intensive Class in Basic Physical Chemistry

学	年	第1	学年	科目分類	自	由		前期	・後期	前	期			単 位	0.5
教	授	楠	文代		准	教	授	袴田	秀樹			講	師	小谷	明
助	手	高橋	浩司		講師	「客	員)	栂野	正						

♥習目標 (GIO)

薬剤師は、医療の担い手の一人であり、科学性と倫理性を併せもった薬の専門家である。科学性の基本は化学、生物学、物理学を基礎とする自然科学の薬学である。化学あるいは物理学の基本事項をしっかり理解できていなければ、信頼できる薬の専門家への道筋が危ぶまれる。特に、1年前期の物理系薬学の視点から関連の化学の基礎を集中的に学習する。

授業内容

回数	担当	内 容
1	楠・袴田・小谷・ 高橋・栂野	原子と分子:物質を構成する原子と分子について
2	//	単位:化学に関わる単位の考え方について
3	//	濃度:溶液の濃度とその表し方、溶液の調製方法について

授業で行っている工夫:小テストによって個人の一般化学の修得の度合いを評価し、不合格者には理解できるまで個別の 指導を行う。

指导を13 J。 モデル・コアカリ: B2 (2) 薬学の基礎としての化学

キュラムとの関連

成 績 評 価 方 法: 1) 形成的評価:毎回授業の最初に小テストを行う。教員が小テストの解説をしている間に採点を行い、解説終了後に合格者を発表する。不合格者は、後日又は直後に行う再小テストを受け、 教員が全問理解したと判断するまで、合格とみなさない。

2)総括的評価:3回の授業すべての合格をもって、単位認定とする。

オフィスアワー: 楠・袴田・小谷・高橋・栂野 いつでも可

所 属 教 室:楠·袴田·小谷·高橋 分析化学教室 研究2号館4階

栂野 学習相談室 教育2号館1階

特 記 事 項:一年必修科目である「化学平衡論」「分析化学」の基礎中の基礎であるので、自由科目であるが全

員受講すること。

XI 実習科目

専

■専門科目	
[専門科目 I]	
病理組織学	304
薬局管理学	305
反応有機化学	307
構造有機化学	308
細胞工学	309
東洋医学概論	311
臨床医学概論	312
医薬品開発	313
薬剤経済学	315
香粧品科学	316
■自由科目	
インターンシップ	317

病理組織学 1

Histopathology

年 第3学年 科目分類 選択

教授(客員) 芹澤 博美

学習目標 (GIO) 主要病変における臓器・組織の形態変化を知り、疾患の概念を系統的に理解する。

前期・後期

前期

単 位

1

講師紹介

芹澤 博美 東京医科大学八王子医療センター病理診断部

行動目標 (SBOs)

病理総論の分類に従い、疾患の定義を理解する。

授業内容

回数	担 当	内 容
1	芹澤	ガイダンス —— 病理組織学とは
2	//	退行性病変および代謝障害
3	//	循環障害および進行性病変
4	//	炎症
5	//	免疫
6	//	腫瘍総論 腫瘍の種類と名称および形態
7	//	腫瘍総論 腫瘍の発育
8	//	腫瘍総論 腫瘍と宿主および悪性度
9	//	腫瘍総論 腫瘍の分類と疫学
10	//	腫瘍各論 胃癌·大腸癌
11	//	腫瘍各論 子宮頚癌·子宮体癌
12	//	腫瘍各論 乳癌
13	//	腫瘍各論 肺癌
14	//	腫瘍各論 造血器腫瘍

授業で行っている工夫: 病的臓器の写真や顕微鏡写真をできるだけ多く使います。

成績評価方法:レポート提出。

教 書:わかりやすい病理学(南江堂)

参考書:ロビンス基礎病理学第7版(廣川書店)

教員からの一言:疾患の概念を知ることで視野が拡がるかもしれません。

また、自分の目で癌を見てみましょう。

薬局管理学

Pharmacy Administration

教 授 松本 有右

第3学年

教授 (客員) 渡邉 清司

単 山田 准教授(客員)

位

1

弘志

学習目標 (GIO)

年

保険薬局を取り巻く環境は刻々と変化するが、医療の担い手の目指すところは、いかに患者さん のQOLを向上し、満足してもらえるかというところにある。これを保険薬局薬剤師として実行す るためには、法的な問題を知り、技術的に習熟し、迅速な情報入手方法を知り、医薬品の適正使 用に貢献していかなくてはならない。しかし、これらのことはとても6年間では学習し尽くせない。 現場の薬剤師になった後、本当の勉強が始まる。本講義では、5年次における2.5ヶ月薬局実務 実習と卒後の薬局薬剤師が自ら学ぶべき課題を網羅的に取り上げる。当然国家試験関連問題とも リンクして学ぶ。

前期・後期 後

期

講師紹介

松本 有右 実務実習研修センター/薬局管理学講座

渡邉 清司 八王子薬剤センター

科目分類

選 択

山田 弘志 八王子薬剤センター

▋行動目標 (SBOs)

1	薬局薬剤師の社会的役割や責任を理解し、薬局薬剤師が遵守すべき法や制度について学ぶ。	
2 薬局業務(疑義照会、服薬指導、薬歴管理などの調剤業務、一般用医薬品販売、在宅医療、医薬品情報管の実際を理解し、基本的知識を習得する。		
3	地域医療連携、学校薬剤師、市民講座など地域に貢献する薬剤師の社会的活動や実習受け入れ、研究発表などの教育活動、薬局の採算性、薬局の展望について学ぶ。	

回数	担 当	内 容	対応 (SBOs)
1	松本	オリエンテーション(薬局管理学とは、薬局の仕事)	1
2	//	薬局の果たすべき役割、薬局の使命、薬局の組織	1
3	渡邉	医薬分業、薬局業務運営ガイドライン	1
4	松本	保険制度、保険調剤の仕組み、調剤報酬	1
5	山田	薬局の構造設備、薬局の業務(調剤)	1
6	松本	リスクマネジメント (調剤過誤防止、個人情報の流出防止)、 介護保険	1、2
7	山田	医薬品情報の収集と管理、後発医薬品	1, 2
8	渡邉	薬局の業務(服薬指導、調剤支援システム)	1, 2
9	松本	薬局の業務(保険調剤の観点からみた薬歴管理)	1, 2
10	山田	薬局の業務(疑義照会、薬歴管理)	1, 2
11	渡邉	薬局の業務(在庫管理、麻薬・向精神薬管理)、在宅医療	1, 2
12	山田	一般用薬品とセルフメディケーション	1, 2
13	松本	地域貢献(地域住民への貢献、地域医療連携、学校薬剤師、 薬剤師会)	3

I XI 実習科目

回数	担 当	内 容	対応 (SBOs)
14	渡邉	薬局の財務と採算性、薬局の現状と展望	3
15	松本	教育活動、薬剤師数の増加と6年制薬学教育(総括)	1, 2, 3

授業で行っている工夫:本講義の中で、インターネットを用いたWebテレビ会議を通じて現場の学校薬剤師が行う小学校でのお薬授業に参加して頂きます。

モデル・コアカリ: C18 薬学と社会(1)薬剤師を取り巻く法律と制度、(2)社会保障制度と薬剤経済、(3)コミュキュラムとの関連 ニティーファーマシー

成績評価方法: 定期試験の成績および出席状況(授業態度も含む)

教 書: ビジュアル薬剤師実務シリーズ 1 薬局管理の基本 (上村直樹/下平秀夫編集 羊土社) ビジュアル薬剤師実務シリーズ 2 薬局管理の基本 (上村直樹/下平秀夫編集 羊土社)

考 書:治療薬マニュアル2009 (医学書院)

第十二改訂 調剤指針 増補版(日本薬剤師会編集 薬事日報社)

薬局管理学(上村直樹/下平秀夫編集 じほう)

新人薬剤師えい子と学ぶ薬局入門(上村直樹、下平秀夫他監修 薬事日報社)

オフィスアワー: 水曜午後 薬学事務課にて

所属教室: 松本 有右 実務実習研修センター 内線2162/八王子薬剤センター 042-666-0931

特 記 事 項:本講座は座学の講義形式を取りますが、場合により小テスト(演習)を取り入れて行います。

教員からの一言:本講座の講師はすべて現場で活躍する薬局薬剤師です。本講座をしっかり受講すれば、薬局薬剤師の仕事の面白さとやりがいを理解して頂けると思います。

反応有機化学

科目分類

択

選

第3学年

Synthetic Organic Chemistry

教授 青柳榮

学習目標 (GIO)

有機合成化学は、有機化学の基本的な個々の官能基別あるいは反応機構別の知識を総合して別の 観点から見直しすることができるため有機化学に対する理解をさらに深めるのに有効である。本 講義では基本的な有機反応からやや高度な合成反応までをできるだけわかり易く解説し、低学年 で履修した有機化学の基礎をより確実に理解・把握できるようにする。

前期・後期 後

期

単 位

1

┃ 行動目標 (SBOs)

1	代表的な炭素酸のpKaと反応性の関係を説明できる。
2	代表的な炭素-炭素結合形成反応(アルドール反応、マロン酸エステル合成、Michael付加、Mannich反応、 Grignard 反応など)について概説できる。
3	芳香族化合物の求電子置換反応について説明できる。
4	芳香族化合物の求核置換反応について説明できる。
5	代表的な芳香族複素環化合物の性質を芳香性と関連づけて説明できる。
6	代表的芳香族複素環の求電子試薬に対する反応性および配向性について説明できる。
7	代表的芳香族複素環の求核試薬に対する反応性および配向性について説明できる。
8	官能基(アルケン、アルキン、ハロゲン化合物、アルコール、アルデヒド、ケトン、カルボン酸誘導体、アミンなど)の代表的な合成法について説明できる。
9	代表的な官能基選択的反応を列挙し、その機構と応用について説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	青柳	有機合成化学概論	
2~3	//	カルボアニオンの発生とC-アルキル化反応	1
4~7	//	重要な炭素-炭素結合形成反応	2
8	//	芳香族求電子置換反応による芳香族化合物の合成	3
9	//	芳香族求核置換反応、ジアゾニウム塩を用いる合成	4
10~11	//	芳香族複素環化合物 (πー過剰およびπー欠如芳香族複素環) の反応	5、6、7
12~13	//	官能基導入反応(炭素-炭素多重結合、ヒドロキシ基、アミノ基、シアノ基、ニトロ基などの導入、カルボニル化合物、 有機硫黄化合物などの合成)	8, 9

授業で行っている工夫: 各項目を学習することの目的と意義を明確に示すとともに、基本事項の定着を図るため、講義の

理解に必要な基礎知識については既習の内容についてもできるだけ省略すること無く解説し、理解に必要な基礎知識については既習の内容についてもできるだけ省略すること無く解説し、理解に必要な基準を表現しません。

解しやすい講義を行うよう努めている。

モデル・コアカリ: C5 ターゲット分子の合成(1) 官能基の導入(2) 複雑な化合物の合成

キュラムとの関連

成績評価方法: 1) 形成的評価 a) 知識: 適宜小テストを行う。 c) 態度: 出欠を記録する。

2) 総括的評価 a) 知識: 定期試験に c) 態度: 出席率を加味して総合的に評価する。

教 書:有機合成化学(加藤明良ら著 朝倉書店)

オフィスアワー:いつでも可。 ただし、要予約。

所 属 教 室:機能性分子設計学教室 研究2号館3階306

XI実習科

構造有機化学

Structural Theory of Organic Chemistry

前期

単 位

1

学年 第3学年 科目分類 選択

准教授 土橋 保夫

学習目標 (GIO) 本講義では、基礎有機化学で学んだ立体化学を総括的に復習した後、分子構造に関する発展的なトピックについて解説する。また、赤外分光法および核磁気共鳴スペクトルについても復習した後、分子間相互作用の評価、ジアステレオトピックなプロトンに起因するNMRスペクトルの解析等について解説する。

前期・後期

授業内容

回数	担 当	内 容	対応 (SBOs)
1~3	土橋	分子構造の立体化学的解釈	
4~6	//	分子形状と対称	
7 ~ 10	//	立体化学と分光法(1)	
11~12	//	立体化学と分光法 (2)	

授業で行っている工夫: 毎回提出課題を課し、その日の授業内容のより深い理解に努めている。

モデル・コアカリ: C4 化学物質と性質と反応 (1) 化学物質の基本的性質 (2) 有機化合物の骨格 (4) 化学物キュラムとの関連 質の構造決定試

成績評価方法:1) 形成的評価 a:知識:演習問題を適時行う。b:技能:該当事項なし。c:態度:受講態度

および提出物の内容から、適時フィードバックする。

2) 総括的評価 a: 知識: 試験で評価する。b: 技能: 該当事項なし c: 態度: 1)-c の該 当項目に不備がなければ合とする。

教 書:講義用プリントを用いる。

参考書:マクマリー有機化学第7版(上、中、下)(J. McMurry著伊藤ら訳東京化学同人)

オフィスアワー: いつでも可。

所 属 教 室: 医薬品情報解析学教室 研究2号館2階206

細胞工学 Cell Technology

学年 第3学年 科目分類 選択 前期·後期前期 単位 1

准教授 安達 禎之

学習目標 (GIO)

近年の医薬品開発において、遺伝子工学や細胞工学の発展と共に培われてきた技術はきわめて重要な位置を占めている。さらに、ヒトゲノム解析が終了した現在、今後生まれてくる医薬品や医療技術は、既存の遺伝子工学や細胞工学に加え、ゲノム情報の利用などにより一層多様化することが予想される。本講義では、医療におけるバイオテクノロジーの重要性を理解するために、その根幹を成す遺伝子工学及び細胞工学の基本を学習する。

▋行動目標 (SBOs)

1	遺伝子の基本的構造について説明できる。
2	遺伝子の転写の機構について説明できる。
3	遺伝子発現からタンパク質合成までの過程を説明できる。
4	遺伝子組換えの基本的な手法について概説できる。
5	遺伝子工学に必要な酵素類、ベクターについて説明できる。
6	遺伝子クローニングについて概説できる。
7	細胞への遺伝子導入の方法について説明できる。
8	細胞を用いた遺伝子産物の効率的な生産方法について説明できる。
9	細胞分化の調節と細胞機能との関わりについて細胞培養法の観点から概説できる。
10	細胞融合法について説明できる。
11	抗体産生ハイブリドーマの作製法について概説できる。
12	抗体分子の基本構造について説明できる。
13	単クローン抗体と多クローン抗体の違いについて説明できる。
14	キメラ抗体、ヒト型抗体の作製法について概説できる。
15	遺伝子組換え型抗体医薬品の利点について説明できる。
16	抗体を用いた診断法について例をあげて説明できる。

回数	担 当	内 容	対応 (SBOs)
1	安達	バイオテクノロジー概説(ビデオを見ながら)	1、4
2	//	遺伝子の基本的構造と機能	1, 2
3	//	遺伝子からタンパク質発現までの流れ	3
4~5	//	組換えDNA実験の定義と方法論	4、5、6
6	//	細胞への遺伝子導入とその発現制御	2、7、8
7	//	遺伝子工学、発生工学を応用した医薬品の生産	8, 9
8	//	細胞分化の制御と細胞機能との関わり	9

П

回数	担 当	内 容	対応 (SBOs)
9	//	抗体分子の基本構造、抗体産生機構	11
10	//	単クローン抗体の作製技術	10、11、12、13
11	//	キメラ抗体、ヒト型抗体の作製と抗体医薬への応用	14、15
12	//	抗体を用いた分析方法の診断への応用	14、15、16
13	//	総括	

授業で行っている工夫: 毎回、講義に用いるスライドファイルをWebに掲載し、各自ダウンロードできるようにしている。 さらに講義内容に則した小テスト問題を配布し、講義中にチェックさせることで講義に集中でき るようにしている。

モデル・コアカリ: C8 生命体の成り立ち (2) 生命体の基本単位としての細胞、(3) 生体の機能調節、(4) 小 キュラムとの関連 さな生き物たち、

C9 生命をミクロに理解する (1) 細胞を構成する分子、(2) 生命情報を担う遺伝子、(3) 生命活動を担うタンパク質、(5) 生理活性分子とシグナル分子、(6) 遺伝子を操作する

C10 生体防御 (1)身体をまもる、(2)免疫系の破綻・免疫系の応用

C17 医薬品の開発と生産 (3) バイオ医薬品とゲノム情報

成績評価方法: 1) 形成的評価 a) 知識: 小テスト、Web class講義資料などを項目ごとに行う。

c) 態度:受講態度(出席状況等)により評価する。

2)総括的評価 a)知識:定期試験、小テストなどにより総合的に評価する。

c) 態度:受講態度(出席状況等)により評価する。

教 科 書:適宜、プリント配布、WebClass 又は本学免疫学教室のHPからのダウンロードを指示。

参考: ゲノム工学の基礎(野島博著 東京化学同人)

細胞工学入門(小田鈎一郎著 共立出版)

オフィスアワー: いつでも可。 但し、要予約。 所 属 教 室: 免疫学教室 研究2号館505号

必5

東洋医学概論

英明

科目分類

選 択

Introduction to Oriental Medicine

前期·後期 後

期

単 位

1

年 第3学年 猪越

学習目標 (GIO)

准教授

生薬は医薬品の原点であり、漢方をはじめとする東洋医学は、今日その有用性が高く評価されつ つある。なかでも中国の伝承医学は『中国医学(中医学)』と呼ばれ、中国においては中医薬大学 等で体系だった医学教育が現在も行われ、中西医結合(中医学と西洋医学の両面から治療を行う) など新たな試みがなされている。本邦においても、西洋医学とともに漢方療法が行われる機会が 増えており、薬剤師として漢方療法の基礎である中医学の知識が求められている。本講義では中 医学入門として、中医基礎理論から中医学的診断法、漢方薬の使い方および副作用や注意点など を中心に解説する。

▋行動目標 (SBOs)

1	中医学の歴史を学ぶ
2	中医学の基礎理論を学ぶ
3	中医学的な病気のとらえ方を理解する
4	中医学的な診断方法を理解する
5	代表的な方剤の使い方と注意点を理解する
6	現代医療において漢方薬がどの様に使われているかを理解する
7	経絡(ツボ)理論を学ぶ

授業内容

回数	担 当	内 容	対応 (SBOs)
1	猪越	中医学の歴史	1
2	//	中医学の基礎理論(整体観、陰陽・五行説)	2
3	//	中医学から見た人体の生理 1 (気・血・津液)	3
4	//	中医学から見た人体の生理2(五臓六腑など)	3
5	//	中医診断学 1:問診の仕方など(四診)	4
6	//	中医診断学2:(舌の見方)	4
7	//	弁証論治 1:八綱弁証からわかること	4
8	//	弁証論治2:気血津液弁証からわかること	4
9	//	弁証論治3:臓腑弁証からわかること	4
10	//	方剤の基礎知識 1:主な方剤の性質、効能および副作用などの 注意点	5
11	//	方剤の基礎知識 2	5
12	//	実践中医学1:かぜの初期対策、生活習慣病など	6
13	//	鍼灸(ツボ、経絡)の基礎知識	7

授業で行っている工夫: 初学者にも理解できるよう、スライドを中心に分かりやすく解説する。

モデル・コアカリ: C7 自然が生み出す薬物 キュラムとの関連 (1) 薬になる動植鉱物

(2) 薬の宝庫としての天然物

(3) 現代医療の中の生薬・漢方薬

成績評価方法:小試験の得点、出席回数、期末試験の総合評価

書: プリントを配布 教 科

書:わかる中国医学(邱 紅梅著 原)

中医学入門(神戸中医学研究会編著 医歯薬出版)

中医臨床のための「中薬学」「方剤学」(神戸中医学研究会編著 医歯薬出版)

オフィスアワー: 猪越 水曜日 (授業後) 薬学事務課へ連絡のこと

П

臨床医学概論

Introduction to Clinical Medicine

前期・後期

年 第3学年 科目分類 土田

明彦

学習目標 (GIO)

教授 (客員)

医療に携わる一員として医学の使命を理解するとともに、薬剤師がチーム医療の中で果たしてい る役割について、実際の活動状況を含めて学んでいく。

前 期 単 位

1

講師紹介

土田 明彦 東京医科大学病院 消化器外科:小児外科

選択

▋行動目標 (SBOs)

1	医療の現状とチーム医療の必要性について説明できる。
2	医療安全における基本的な考え方と薬剤師の役割を説明できる。
3	がん化学療法の基本概念と薬剤師の役割について説明できる。
4	がん疼痛緩和ケアの基本原則と薬剤師の役割について説明できる。
5	栄養サポートチームの実際と栄養管理について説明できる。
6	感染症対策の現状と薬剤師の役割について説明できる。
7	褥創の病態と治療について説明できる。
8	生活習慣病、メタボリック症候群の現状と薬剤師の役割について説明できる。
9	臓器移植の現状と薬剤師の役割について説明できる。
10	米国のチーム医療の現状と薬剤師の役割について説明できる。

授業内容

回数	内 容	対応 (SBOs)
1	日本の医療の現状、チーム医療の必要性	1
2	医療安全におけるチーム医療	2
3	がん化学療法におけるチーム医療(1)	3
4	がん化学療法におけるチーム医療(2)	3
5	がん疼痛緩和ケアにおけるチーム医療(1)	4
6	がん疼痛緩和ケアにおけるチーム医療(2)	4
7	輸液・栄養管理におけるチーム医療(1)	5
8	輸液・栄養管理におけるチーム医療(2)	5
9	感染症対策におけるチーム医療(1)	6
10	感染症対策におけるチーム医療(2)	6
11	褥瘡におけるチーム医療	7
12	生活習慣病におけるチーム医療	8
13	臓器移植におけるチーム医療	9
14	米国におけるチーム医療	10

モデル・コアカリ:講義内容は、実務実習モデル・コアカリキュラムの教育目標に準拠しています。 キュラムとの関連

成績評価方法:前期試験期間内に試験を実施する。

教 科 書:特になし。

> 参考資料: Web Class (http://katharina.ps.toyaku.ac.jp/) 時間割表: 2010年前期 選 択可能なコース: (開講中) 講義·実習_2010 3年選択 臨床医学論 臨床医学概論講義資料 (パ ワーポイント資料)を参照

書:特になし。必要な参考文献や資料は、適宜配布する。

オフィスアワー: 土田 明彦 適宜 東京医科大学病院 消化器外科・小児外科 質問等はメールでご連絡くださ

(akihikot@tokyo-med.ac.jp)。

教員からの一言: 将来、医療機関の臨床薬剤師を志す者は是非とも履修していただきたい。

IX

医薬品開発

第3学年

Pharmaceutical Development and Production

前期

単 位

1

前期・後期

教授 林良雄

学習目標 (GIO)

薬学は生命や生体機能に関与する「物質」を主な対象とする学問であり、副作用の少ない効力の優れた医薬品を開発・製造して人類の福祉に貢献することが重要な目的の一つである。近年のバイオ技術の発展は遺伝子組換えワクチン・ホルモンや抗体医薬などを創造し、医薬品の世界に最も大きな影響を与えている。すなわち今日の医薬品開発の根幹である創薬科学は、有機合成を中心としつつも、生命科学から物理学までのあらゆる科学に支援された総合科学となっており、これを会得するには生命機能と物質との関連性を分子レベルで理解することが重要である。このような観点から、この講義の目的は以下に示す医薬品開発(創薬)における基本知識を修得し、併せてそれらを実施する上で求められる適切な態度を身につけることにある。

- 1) 医薬品となる物質、すなわち「医薬品候補化合物」がどのように創製されているかの「創薬の考え方」を、具体的な例をもとに理解する。
- 2) 医薬品開発における基本的な科学、すなわち生命科学・物理化学・コンピュータを用いた計算科学に基づく合理的アプローチを導入した分子設計を理解する。
- 3) 医薬品開発の実際の流れを過去および現在の開発動向を踏まえて理解する。

講師紹介

片倉 晋一 第一三共株式会社 研究開発本部 機能分子第二研究所 第五グループ 主任研究員

大木 秀徳 アステラス製薬株式会社 研究本部 化学研究所 専任理事

浅野 克彦 前 キリンファーマ株式会社 代表取締役社長

吉本 昌文 ファーマBDL LLC代表 (元三共株式会社ライセンス部長 理事)

林 良雄 本学教授(薬品化学)

科目分類

選択

┃ 行動目標 (SBOs)

-	
1	創薬の歴史に関して概説できる。
2	医薬品開発の現状に関して概説できる。
3	医薬品候補化合物の発見・創製について概説できる。
4	生物製剤の重要性と開発について説明できる。
5	酵素を標的とする薬について説明できる。
6	受容体を標的とする薬について説明できる。
7	ドラッグデザインについて説明できる。
8	医薬品としての生理活性物質を説明できる。
9	天然物からの創薬を説明できる。
10	代表的な医薬品の開発について説明できる。
10-1	抗生物質(β – ラクタム)の作用機構と酵素阻害剤の関係を理解できる
10-2	ステロイド剤の開発を説明できる。
10-3	高血圧薬の開発を説明できる。
10-4	抗潰瘍剤の開発を説明できる。
11	医薬品の導入と導出を説明できる。

▋授業内容

回数	担 当	内 容	対応 (SBOs)
1	林	医薬品候補化合物の探索と創製	1,3
2	//	医薬品としての生理活性物質	1, 8
3	//	最近の医薬品の開発動向	2、3
4	//	酵素を標的とする薬の創薬化学	5、7、10
5	大木	創薬研究の基礎知識とトレンド	3, 9
6	//	天然物からの創薬	3, 9
7	片倉	コンピュータを利用したドラッグデザイン	5、7、10
8	//	コンピュータを利用した酵素阻害剤の開発	5、7、10
9	浅野	製薬企業における創薬展開 (バイオ医薬品の開発)1	2、4
10	//	製薬企業における創薬展開 (バイオ医薬品の開発)2	2、4
11	吉本	医薬品の導入と導出	2, 11
12	林	β-ラクタム抗生物質の作用機構とプロテアーゼ阻害剤	5、7、10
13	//	ステロイド剤の創薬化学	7、10

授業で行っている工夫:製薬企業で活躍されている講師を招聘し、ホットな話題を提供していただく。

モデル・コアカリ: C6-2、C17-(1)、C17-(2)、C17-(3)

キュラムとの関連

成績評価方法:出席、受講態度および定期試験等によって総合的に評価する。

教 科 書: 講師のパワーポイント資料のプリント (配付または生協にて販売予定)

参考書:創薬化学(長野哲雄、夏苅英昭、原博編、東京化学同人)

日本薬学会編、スタンダード薬学シリーズ8「医薬品の開発と生産」(東京化学同人)

オフィスアワー: 在室の時はいつでも可。

所属教室:林良雄薬品化学教室研究棟2号館3階

教員からの一言: 創薬化学の基本的な考え方を理解していただき、将来製薬企業での活躍を希望する方へのインセ

ンティブになれば幸いです。

IX

科次目

薬剤経済学

Pharmacoeconomics

年 第3学年 科目分類 選択 前期・後期 後 教授 (客員) 津谷喜一郎 非常勤講師 五十嵐 中

学習目標 (GIO)

医薬品の合理的使用を目指し、その社会経済的価値を評価するための基本的な考え方と現状とを 学ぶ。

期

単

柼

1

講師紹介

津谷喜一郎 東京大学大学院薬学系研究科医薬政策学 特任教授 本学客員教授 五十嵐 中 東京大学大学院薬学系研究科医薬政策学 特任助教

▋行動目標 (SBOs)

1	薬剤経済学を学ぶ際の土台として、生物統計学や臨床試験の基礎知識を習得する。
2	薬剤経済評価の具体的な手法を理解する。
3	介入のコスト(費用)を評価する手法を理解する。
4	介入のアウトカム(効果・費用・便益)を評価する手法を理解する。
5	経済評価と密接に関連する、医療保険制度・薬価制度についての理解を深める。
6	既存の薬剤経済評価研究を批判的に吟味する手法を学ぶ。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	津谷喜一郎	薬剤経済学とは、研究デザイン	1
2	//	エフェクトサイズ	1
3	//	エンドポイント、プラセボ、臨床試験の倫理	1
4	五十嵐 中	薬剤経済評価の基礎手法	2
5	//	コスト(費用)の扱い方	3
6	//	アウトカム(効果・効用・便益)(1)	4
7	//	アウトカム(効果・効用・便益)(2)	4
8	//	メタアナリシスとシステマティック・レビュー	4
9	//	モデルを使った薬剤経済評価	3、4
10	//	医療費と診療報酬制度・薬価制度(1)	5
11	//	医療費と診療報酬制度・薬価制度(2)	5
12	//	薬剤経済評価研究の実際(1)	6
13	津谷喜一郎	薬剤経済評価研究の実際(2)	6
14	//	薬剤経済評価研究の批判的吟味 (1)	6
15	//	薬剤経済評価研究の批判的吟味 (2)	6

授業で行っている工夫: パワーポイントをただ流す「受け身」の授業だけでなく、ディスカッションや論文の批判的吟味

など、能動的に授業に参加できるような工夫をしている。

モデル・コアカリ: C18 薬学と社会 (2) 社会保障制度と薬剤経済

キュラムとの関連

成績評価方法: 学期末試験ないしレポートおよび出席状況を総合して評価する。

科 書:初回授業時に説明する。 教 考 書:初回授業時に説明する。

オフィスアワー: 津谷喜一郎 いつでも可。(できれば事前にe-mailにて連絡のこと)

五十嵐 中 いつでも可。(できれば事前にe-mailにて連絡のこと)

香粧品科学

Cosmetic Science 択

選

年 第3学年 科目分類

非常勤講師 北村 謙始

学習目標 (GIO)

香粧品(通常、化粧品と同義語)は、健常人の日常生活と深くかかわりあい、様々な目的に使用 されている。化粧品(薬用化粧品といわれる医薬部外品を含む)は、薬事法で定義されているよ うに、人の身体の清潔、美化、魅力づけ等を目的に用いられ、その作用は緩和なものであり、医 薬品とは本質的に異なっている。また、化粧品を支える科学は、化学、薬学、物理化学をはじめ 皮膚科学、工学、心理学等、多彩な領域を含んでいる。本講では、化粧品と薬学との関わりに焦 点をあて、化粧品の科学的理解の向上を目的に、化粧品の基本的特性に加え、成分、製品につい て解説し理解を促進する。

前期・後期

前 期 単 位

1

北村 謙始 株式会社資生堂 スキンケア研究開発センター 講師紹介

▋行動目標 (SBOs)

,	(
I	化粧品の本質の理解(定義および科学的理解)
2	化粧文化、歴史を知る
3	化粧品の品質特性の理解
4	皮膚の構造と基本機能ならびに皮膚の細胞と機能の理解
5	化粧品の有用性の理解
6	化粧品主要成分の理解
7	化粧品の基本的な製剤技術の理解

▋ 授業内容

回数	担 当	内 容	対応 (SBOs)
1	北村	化粧品概要(1): 化粧品の定義、化粧品の分類、化粧品と薬 事法等	1
2	//	化粧品概要(2): 化粧品の歴史等	2
3~5	//	皮膚科学:皮膚の構造と機能、環境と皮膚	4、5
6~7	//	化粧品の有用性(有効性)とその評価法の実際 化粧品成分の研究開発:皮膚科学と化粧品成分開発	3、4、5、6
8	//	化粧品の特性評価:感性工学の応用(感性評価法の開発)	4、5
9	//	化粧品の製剤技術:化粧品の基本的な製剤技術	7
10	//	化粧品各論 1:洗浄用化粧品、スキンケア化粧品の基礎	4、5、7
11	//	化粧品各論2:メーキャップ化粧品の基礎	5、6、7
12	//	化粧品各論3: 芳香化粧品の基礎	4, 5
13	//	総括:講義のまとめ	

授業で行っている工夫: · 教科書を基本教材とするが講義を補完する資料を準備する。

・化粧品成分、製剤に触れる機会の提供。

・講義資料は教科書を基に図、動画を組み込み理解の促進を図る。

成績評価方法: 定期試験(筆記試験) 結果ならびに出席状況 科 書:新化粧品学(第2版)(光井武夫編 南山堂) 教

書: 化粧品の有用性 (日本化粧品技術者会編 薬事日報社)

化粧品事典 (日本化粧品技術者会編 丸善)

オフィスアワー: 北村 謙始 講義日 13:00~17:00頃 講師控室

IX

インターンシップ Internship

学年 第3・4・5学年 科目分類 自由 前期・後期 8月 単位 1

教授 野水 基義

学習目標 (GIO)

私たちは薬学を学んで卒業し、社会に役に立ついろいろな職業に就く事ができる。人に聞いたり自分で思い描いている職業を、実際に体験してより正しく理解することが、これから一生の職業を選ぶ場合に、たいへん重要なことである。限られたチャンスしかないが、いろいろな職場で、実際に仕事をしている人にその仕事について教えていただき、今後の就職活動に大いに役立てて欲しいと思う。本学のインターンシップの目的は次の通りである。① 職業意識、就業意識の促進、

② 業種、職種、企業の正しい理解、③ 勉学意欲の亢進

行動目標 (SBOs)

授業内容

回数	担当	内 容
1		就業体験に先立って6~7月に事前授業を実施して、インターンシップの「意義、心得、事前準備」 「マナー、身だしなみ」などについて理解してもらう。
2 企業就業体験は夏期休暇中の		企業就業体験は夏期休暇中の8~9月上旬に実施し、就業期間は3日間以上とする。
3	-	終了後にレポート提出、9月下旬に、検討会および発表会などを実施する。

成績評価方法:事前授業の出席、受講態度および企業就業中の研修態度、企業就業体験後のレポート提出と発表をもとに、総合的に評価する。実習0.5単位、前後の準備0.5単位で1単位とする。

オフィスアワー: 斎藤 由紀夫 いつでも可 キャリアセンター

特 記 事 項:履修希望者が予定の人数を超過した場合は、受け入れ先の定員等に合わせて選考する。 また、取得単位の少ない人を優先する。

XI 実習科目

■専門科目

バイオスタティスティクス [(緩和医療の最前線) 32
バイオスタティスティクスⅡ (生物統計学Ⅱ) 32
バイオスタティスティクスⅢ (生物統計学Ⅲ) 32
マーケティング [(医薬品マーケティング [) 32
マーケティングⅡ (医薬品マーケティングⅡ) 32
マーケティングⅢ (医薬品マーケティング戦略) 33
マーケティングIV
医療経済学特論 33
病原微生物学特論(感染制御学特論)…33
医薬品生産特論 33
多变量解析 33
治験の実際 (創薬育薬分野における薬剤師) … 33
病態生理学特論 34
医薬品開発特論 I (構造有機化学特論)… 34.
医薬品開発特論Ⅱ(有機合成化学特論)… 34
臨床薬理学特論 34
後期選択専門科目Ⅱ34

6年次

門 科 目 Π

バイオスタティスティクス I (緩和医療の最前線)

Biostatistics I (Up to date palliative care)

学年 第6学年

科目分類 選 択

前期・後期 前 期

単位

准教授 杉浦 宗敏

学習目標 (GIO)

近年、緩和医療に対する社会のニーズが高まっている。超高齢化社会を向かえたわが国の医療において重要な位置づけがなされる緩和医療についての理解を深めることを目標とする。また、緩和医療では多職種によるチーム医療が展開されるが、チームの中で各職種が専門的な知識や技術を生かすことによって効果的な医療が実現する。各職種それぞれのアプローチ方法を知るとともに薬剤師として求められる知識や技術を習得する。臨床試験の評価を行うために必須となるバイオスタティスティクスを例に挙げる。

講師紹介

岩瀬 哲 東京大学医学部附属病院緩和ケア診療部副部長

中嶋須磨子 東京大学医学部附属病院看護部副看護師長 海津未希子 東京大学医学部附属病院看護部副看護師長 黒田誠一郎 東京大学医学部附属病院薬剤部薬品管理主任

杉浦 宗敏 医薬品安全管理学教室

▋行動目標 (SBOs)

1	医療に関わる倫理的問題を列挙し、その概略と問題点を説明できる。
2	死に関わる倫理的問題(安楽死、尊厳死、脳死など)の概略と問題点を説明できる。
3	予防、治療、延命、QOL(について説明できる。
4	病気が患者に及ぼす心理的影響について説明できる。
5	患者の心理状態を把握し、配慮する。
6	患者の家族の心理状態を把握し、配慮する。
7	患者やその家族の持つ価値観が多様であることを認識し、柔軟に対応できるよう努力する。
8	癌性疼痛に対して使用される薬物を列挙し、使用上の注意について説明できる。
9	長期療養に付随する合併症を列挙し、その薬物治療について説明できる。
10	臨床試験の代表的な研究デザイン(症例対照研究、コホート研究、ランダム化比較試験)の特色を説明できる。
11	バイアスの種類をあげ、特徴を説明できる。
12	バイアスを回避するための計画上の技法(盲検化、ランダム化)について説明できる。
13	リスク因子の評価として、オッズ比、相対危険度および信頼区間について説明し、計算できる。
14	基本的な生存時間解析法(Kaplan – Meier 曲線など)の特徴を説明できる。

回数	担 当	内 容	対応 (SBOs)
1	杉浦 宗敏	概説(本講義の目的、趣旨説明)	1~14
2、3	海津未希子	終末期がん患者の看護	5~7
4、5、6	黒田誠一郎	終末期がん患者と死生観、臨床試験の評価法	1~3, 10~14
7、8、9	岩瀬 哲	終末期がん患者の診断と治療、臨床試験の評価法	8~14

X 6年次

 回数
 担当
 内容
 対応 (SBOs)

 10、11、12
 中嶋須磨子
 精神疾患患者の看護
 4~7

 13、14、15
 杉浦 宗敏
 まとめ (総括)
 1~14

モデル・コアカリ: A ヒューマニズムについて学ぶ(1)生と死(3)信頼関係の確立を目指して

キュラムとの関連 C14 薬物治療(4)疾病と薬物治療(精神疾患等)

C17 医薬品の開発と生産(5)バイオスタティスティックス

成績評価方法:1)形成的評価 出席状況

2) 総括的評価 レポートおよび出席を総合的に評価する

参考書: がん疼痛の薬物療法に関するガイドライン2010年版: 日本緩和医療学会緩和医療ガイドライン

作成委員会 編(金原出版)

臨床緩和医療薬学:日本緩和医療薬学会 編(真興交易(株)医書出版部)

臨床緩和ケア:大学病院の緩和ケアを考える会 編(青海社)

スピリチュアルケア:谷田憲俊(診断と治療社)

オフィスアワー: 杉浦 宗敏 いつでも可。ただし、事前に予約すること。

医薬品安全管理学教室(DR棟4階2041号室)

所属教室:杉浦宗敏 医薬品安全管理学教室

特 記 事 項:アドバンス病院実習等によって講義に出席できない日がある場合には、事前に申し出ること。個別カリキュラムを組んで実施します。

●選択科目Ⅱは前期に3単位以上を履修する。

- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1 週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

XI 実習科

バイオスタティスティクスⅡ(生物統計学Ⅱ)

Biostatistics II

1

学 年 第6学年

科目分類 選 択

前期:後期 前期

単位

非常勤講師 渋井 二三男

学習目標 (GIO)

医薬品開発、薬剤疫学、薬剤経済学などの領域において、プロトコル立案、データ解析、及び評価に必要な統計学の基本的知識と技能を習得する。

講師紹介

渋井二三男 城西短期大学教授

▋行動目標 (SBOs)

1	生物統計の基礎が説明できる
2	帰無仮説の概念を説明できる 1/2
3	帰無仮説の概念を説明できる2/2
4	パラメトリック検定とノンパラメトリック検定の違いを説明できる 1/2
5	パラメトリック検定とノンパラメトリック検定の違いを説明できる2/2
6	主な二群間の平均値の差の検定法について説明できる 1/2
7	主な二群間の平均値の差の検定法について説明できる2/2
8	Xº検定の適用できるデータの特性を説明できる 1/2
9	Xº検定の適用できるデータの特性を説明できる 2/2
10	最小二乗法による直接回路を説明できる 1/2
11	最小二乗法による直接回路を説明できる 2/2
12	主な多重比較検定法の概要を説明できる 1/2
13	主な多重比較検定法の概要を説明できる 2/2
14	主な多重解析の概要を説明できる 1/2
15	主な多重解析の概要を説明できる2/2

回数	担 当	内 容	対応 (SBOs)
1	渋井 二三男	生物統計の基礎	
2	//	帰無仮説の概念 1/2	
3	//	帰無仮説の概念2/2	
4	//	パラメトリック検定とノンパラメトリック検定 1/2	
5	//	パラメトリック検定とノンパラメトリック検定2/2	
6	//	主な二群間の平均値の差の検定法について 1/2	
7	//	主な二群間の平均値の差の検定法について2/2	
8	//	Xº検定の適用できるデータの特性 1/2	
9	//	Xº検定の適用できるデータの特性2/2	
10	//	最小二乗法による直接回路 1/2	
11	//	最小二乗法による直接回路2/2	
12	//	主な多重比較検定法の概要 1/2	
13	//	主な多重比較検定法の概要 2/2	

IX

回数	担 当	内 容	対応 (SBOs)
14	//	主な多重解析の概要 1/2	
15	//	主な多重解析の概要 2/2	

授業で行っている工夫:あらかじめ学習目標とするキーワードを提示し、目標を明確にしている。できるだけPC & NET にて演習・実習を体験し、より学習が効率化、着実化するよう努める。

モデル・コアカリ: 1. 生物統計の基礎が説明できる

- **キュラムとの関連** 2. 帰無仮説の概念を説明できる 1/2
 - 3.. 帰無仮説の概念を説明できる2/2
 - 4. パラメトリック検定とノンパラメトリック検定の違いを説明できる 1/2
 - 5. パラメトリック検定とノンパラメトリック検定の違いを説明できる2/2
 - 6. 主な二群間の平均値の差の検定法について説明できる 1/2
 - 7. 主な二群間の平均値の差の検定法について説明できる2/2
 - 8. Xº 検定の適用できるデータの特性を説明できる 1/2
 - 9. X²検定の適用できるデータの特性を説明できる2/2
 - 10. 最小二乗法による直接回路を説明できる 1/2
 - 11. 最小二乗法による直接回路を説明できる2/2
 - 12. 主な多重比較検定法の概要を説明できる 1/2
 - 13. 主な多重比較検定法の概要を説明できる2/2
 - 14. 主な多重解析の概要を説明できる 1/2
 - 15. 主な多重解析の概要を説明できる2/2

成 績 評 価 方 法: 1) 形成的評価 a) 知識: 小テスト、課題レポート、Web クラス講義資料などにより項目ごとに 行う

c) 態度:受講態度(出席状況等)により評価する

2) 総括的評価 a) 知識: 定期試験、レポート、中間テストなどにより総合的に評価する

c) 態度:受講態度(出席状況等)により評価する

書: 当面、プリントを配布 教 科

考 書:統計学がわかる(向後千春、冨永敦子 著 技術評論社)

統計解析がわかる(湧井良幸、湧井貞美 著 技術評論社)

ゼロからはじめてよくわかる 多変量解析(長谷川勝也 著 技術評論社)

オフィスアワー: 渋井 二三男 火曜日 昼休み/週、可 講師室 講義当日、ノートパソコンを持参してくださ (,)

室: 渋井 二三男 講師室 所 属 教

項:履修前に簡単なExcelなどのPOskillと高校時代での数学を復習していただくと良いです。 ノートパソコンを持参してください。参加型授業にします。

教員からの一言: ベースが数学・統計学、また、専門用語など難解な点もあるかと思いますが、必ず企業・研究所 ではBio Statistics に遭遇するといっても過言ではない。是非、この際、専門的分析法を理解し、 社会に出てからも実務で活かしてもらいたい。

- ●選択科目Ⅱは前期に3単位以上を履修する。
- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1 週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

バイオスタティスティクスⅢ(生物統計学Ⅲ)

Biostatistics III

1

学 年 第6学年

科目分類 選 択

前期:後期 前期

単 位

非常勤講師 渋井 二三男

学習目標 (GIO)

医薬品開発、薬剤疫学、薬剤経済学などの領域において、プロトコル立案、データ解析、及び評価に必要な統計学の応用的知識と技能を習得する。

講師紹介

渋井二三男 城西短期大学教授

▋行動目標 (SBOs)

1 生物統計臨床への応用におけるバイオスタティスクとは何か説明できる 2 臨床試験の代表的な研究デザインの特色を説明できる 1/3 3 臨床試験の代表的な研究デザインの特色を説明できる 2/3 4 臨床試験の代表的な研究デザインの特色を説明できる 3/3 5 バイアスの種類をあげ、特徴を説明できる 1/3 6 バイアスの種類をあげ、特徴を説明できる 2/3 7 バイアスの種類をあげ、特徴を説明できる 3/3 8 バイアスを回避するための計画上の技法について説明できる 1/3 9 バイアスを回避するための計画上の技法について説明できる 2/3 10 バイアスを回避するための計画上の技法について説明できる 3/3
3 臨床試験の代表的な研究デザインの特色を説明できる2/3 4 臨床試験の代表的な研究デザインの特色を説明できる3/3 5 バイアスの種類をあげ、特徴を説明できる1/3 6 バイアスの種類をあげ、特徴を説明できる2/3 7 バイアスの種類をあげ、特徴を説明できる3/3 8 バイアスを回避するための計画上の技法について説明できる1/3 9 バイアスを回避するための計画上の技法について説明できる2/3 10 バイアスを回避するための計画上の技法について説明できる3/3
4 臨床試験の代表的な研究デザインの特色を説明できる3/3 5 バイアスの種類をあげ、特徴を説明できる1/3 6 バイアスの種類をあげ、特徴を説明できる2/3 7 バイアスの種類をあげ、特徴を説明できる3/3 8 バイアスを回避するための計画上の技法について説明できる1/3 9 バイアスを回避するための計画上の技法について説明できる2/3 10 バイアスを回避するための計画上の技法について説明できる3/3
5 バイアスの種類をあげ、特徴を説明できる 1/3 6 バイアスの種類をあげ、特徴を説明できる 2/3 7 バイアスの種類をあげ、特徴を説明できる 3/3 8 バイアスを回避するための計画上の技法について説明できる 1/3 9 バイアスを回避するための計画上の技法について説明できる 2/3 10 バイアスを回避するための計画上の技法について説明できる 3/3
6 バイアスの種類をあげ、特徴を説明できる 2/3 7 バイアスの種類をあげ、特徴を説明できる 3/3 8 バイアスを回避するための計画上の技法について説明できる 1/3 9 バイアスを回避するための計画上の技法について説明できる 2/3 10 バイアスを回避するための計画上の技法について説明できる 3/3
7 バイアスの種類をあげ、特徴を説明できる 3/3 8 バイアスを回避するための計画上の技法について説明できる 1/3 9 バイアスを回避するための計画上の技法について説明できる 2/3 10 バイアスを回避するための計画上の技法について説明できる 3/3
8 バイアスを回避するための計画上の技法について説明できる 1/3 9 バイアスを回避するための計画上の技法について説明できる 2/3 10 バイアスを回避するための計画上の技法について説明できる 3/3
9 バイアスを回避するための計画上の技法について説明できる2/3 10 バイアスを回避するための計画上の技法について説明できる3/3
10 バイアスを回避するための計画上の技法について説明できる3/3
7.177.0123 (10.371,112.37), (10.371,112.37)
11 リスク因子の評価として、オッズ比、相対危険度および信頼区間について説明し、計算できる 1/2
12 リスク因子の評価として、オッズ比、相対危険度および信頼区間について説明し、計算できる2/2
13 基本的な生存時間解析法の特徴を説明できる 1/2
14 基本的な生存時間解析法の特徴を説明できる2/2
15 まとめ

回数	担 当	内 容	対応 (SBOs)
1	渋井 二三男	生物統計臨床への応用におけるバイオスタティスクとは何か	
2	//	臨床試験の代表的な研究デザインの特色 1/3	
3	//	臨床試験の代表的な研究デザインの特色2/3	
4	//	臨床試験の代表的な研究デザインの特色3/3	
5	//	バイアスの種類をあげ、特徴 1/3	
6	//	バイアスの種類をあげ、特徴 2/3	
7	//	バイアスの種類をあげ、特徴 3/3	
8	//	バイアスを回避するための計画上の技法について 1/3	
9	//	バイアスを回避するための計画上の技法について2/3	
10	//	バイアスを回避するための計画上の技法について 3/3	
11	//	リスク因子の評価として、オッズ比、相対危険度および信頼 区間について 1/2	
12	//	リスク因子の評価として、オッズ比、相対危険度および信頼 区間について2/2	

科次

6年次

回数	担 当	内 容	対応 (SBOs)
13	//	基本的な生存時間解析法の特徴 1/2	
14	//	基本的な生存時間解析法の特徴 2/2	
15	//	まとめ	

授業で行っている工夫: 医薬品開発、薬剤疫学、薬剤経済学などの領域において、プロトコル立案、データ解析、及び評 価に必要な統計学の基本的知識と技能を習得する。

モデル・コアカリ: 1. 生物統計臨床への応用におけるバイオスタティスクとは何か説明できる

- キュラムとの関連 2. 臨床試験の代表的な研究デザインの特色を説明できる 1/3
 - 3. 臨床試験の代表的な研究デザインの特色を説明できる2/3
 - 4. 臨床試験の代表的な研究デザインの特色を説明できる3/3
 - 5. バイアスの種類をあげ、特徴を説明できる 1/3
 - 6. バイアスの種類をあげ、特徴を説明できる2/3
 - 7. バイアスの種類をあげ、特徴を説明できる3/3
 - 8. バイアスを回避するための計画上の技法について説明できる 1/3
 - 9. バイアスを回避するための計画上の技法について説明できる2/3
 - 10. バイアスを回避するための計画上の技法について説明できる3/3
 - 11. リスク因子の評価として、オッズ比、相対危険度および信頼区間について説明し、
 - 12. リスク因子の評価として、オッズ比、相対危険度および信頼区間について説明し、 計算できる2/2
 - 13. 基本的な生存時間解析法の特徴を説明できる 1/2
 - 14. 基本的な生存時間解析法の特徴を説明できる 2/2
 - 15. まとめ

成績評価方法:1)形成的評価 a)知識:小テスト、課題レポート、Webクラス講義資料などにより項目ごと に行う

c) 態度: 受講態度(出席状況等)により評価する

2) 総括的評価 a) 知識: 定期試験、レポート、中間テストなどにより総合的に評価する

c) 態度:受講態度(出席状況等)により評価する

教 科 書: 当日説明します

参 書:統計学がわかる(向後千春、冨永敦子 著 技術評論社)

統計解析がわかる (湧井良幸、湧井貞美 著 技術評論社)

ゼロからはじめてよくわかる 多変量解析(長谷川勝也 著 技術評論社)

オフィスアワー: 渋井 二三男 火曜日 昼休み/週、可 講師室

特記事項:履修前に簡単なExcelなどのPCskillと高校時代での数学を復習していただくと良いです。 ノートパソコンを持参してください。参加型授業にします。

教員からの一言: ベースが数学・統計学、また、専門用語など難解な点もあるかと思いますが、必ず企業・研究所 ではBio Statistics に遭遇するといっても過言ではない。是非、この際、専門的分析法を理解し、 社会に出てからも実務で活かしてもらいたい。

- ●選択科目Ⅱは前期に3単位以上を履修する。
- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

マーケティング [(医薬品マーケティング [)

選択

科目分類

二三男

Marketing (Medicine Marketing I)

1

単 位

学年 第6学年

渋井

学習目標 (GIO)

非常勤講師

どのような医薬品の開発が望まれているかを知るために、疾病統計、市場調査などに関する基本的知識と技能を習得する。ユーザが求めるものが需要であり、製造サイドが新しく提供する技術マテリアルが供給である。医療用医薬品が成熟し、ユーザーが自分の希望する者が無くなる場合、つまり、ニーズが発生しないステージでは、ユーザへの深いリサーチを供給の開発を重点化する必要がある。この需要と供給の関係を、マーケティングとしてとらえる。

前期・後期

前期

講師紹介

渋井二三男 城西短期大学教授

▋行動目標 (SBOs)

1 マーケティングとは何か説明できる 2 マーケティングの概念を説明できる 3 マーケティングの体系と新製品開発を説明できる 4 医療品開発の対象となる疾病を説明できる 1/2 5 医療品開発の対象となる疾病を説明できる 2/2 6 疾病統計により示される日本の疾病の特徴について説明できる 1/3 7 疾病統計により示される日本の疾病の特徴について説明できる 3/3 9 疾病統計により示される先進国の疾病の特徴について説明できる 1/3 10 疾病統計により示される先進国の疾病の特徴について説明できる 2/3 11 疾病統計により示される開発途上国に疾病の特徴について説明できる 1/3 12 疾病統計により示される開発途上国に疾病の特徴について説明できる 2/3 14 疾病統計により示される開発途上国に疾病の特徴について説明できる 3/3 15 まとめ		
3 マーケティングの体系と新製品開発を説明できる 4 医療品開発の対象となる疾病を説明できる 1/2 5 医療品開発の対象となる疾病を説明できる 2/2 6 疾病統計により示される日本の疾病の特徴について説明できる 1/3 7 疾病統計により示される日本の疾病の特徴について説明できる 2/3 8 疾病統計により示される日本の疾病の特徴について説明できる 3/3 9 疾病統計により示される先進国の疾病の特徴について説明できる 1/3 10 疾病統計により示される先進国の疾病の特徴について説明できる 2/3 11 疾病統計により示される先進国の疾病の特徴について説明できる 3/3 12 疾病統計により示される開発途上国に疾病の特徴について説明できる 1/3 13 疾病統計により示される開発途上国に疾病の特徴について説明できる 2/3 14 疾病統計により示される開発途上国に疾病の特徴について説明できる 3/3	1	マーケティングとは何か説明できる
4 医療品開発の対象となる疾病を説明できる 1/2	2	マーケティングの概念を説明できる
5 医療品開発の対象となる疾病を説明できる 2/2 6 疾病統計により示される日本の疾病の特徴について説明できる 1/3 7 疾病統計により示される日本の疾病の特徴について説明できる 2/3 8 疾病統計により示される日本の疾病の特徴について説明できる 3/3 9 疾病統計により示される先進国の疾病の特徴について説明できる 1/3 10 疾病統計により示される先進国の疾病の特徴について説明できる 2/3 11 疾病統計により示される先進国の疾病の特徴について説明できる 3/3 12 疾病統計により示される開発途上国に疾病の特徴について説明できる 1/3 13 疾病統計により示される開発途上国に疾病の特徴について説明できる 2/3 14 疾病統計により示される開発途上国に疾病の特徴について説明できる 3/3	3	マーケティングの体系と新製品開発を説明できる
6 疾病統計により示される日本の疾病の特徴について説明できる 1/3 7 疾病統計により示される日本の疾病の特徴について説明できる 2/3 8 疾病統計により示される日本の疾病の特徴について説明できる 3/3 9 疾病統計により示される先進国の疾病の特徴について説明できる 1/3 10 疾病統計により示される先進国の疾病の特徴について説明できる 2/3 11 疾病統計により示される先進国の疾病の特徴について説明できる 3/3 12 疾病統計により示される開発途上国に疾病の特徴について説明できる 1/3 13 疾病統計により示される開発途上国に疾病の特徴について説明できる 2/3 14 疾病統計により示される開発途上国に疾病の特徴について説明できる 3/3	4	医療品開発の対象となる疾病を説明できる 1/2
7 疾病統計により示される日本の疾病の特徴について説明できる 2/3 8 疾病統計により示される日本の疾病の特徴について説明できる 3/3 9 疾病統計により示される先進国の疾病の特徴について説明できる 1/3 10 疾病統計により示される先進国の疾病の特徴について説明できる 2/3 11 疾病統計により示される先進国の疾病の特徴について説明できる 3/3 12 疾病統計により示される開発途上国に疾病の特徴について説明できる 1/3 13 疾病統計により示される開発途上国に疾病の特徴について説明できる 2/3 14 疾病統計により示される開発途上国に疾病の特徴について説明できる 3/3	5	医療品開発の対象となる疾病を説明できる 2/2
8 疾病統計により示される日本の疾病の特徴について説明できる3/3 9 疾病統計により示される先進国の疾病の特徴について説明できる1/3 10 疾病統計により示される先進国の疾病の特徴について説明できる2/3 11 疾病統計により示される先進国の疾病の特徴について説明できる3/3 12 疾病統計により示される開発途上国に疾病の特徴について説明できる1/3 13 疾病統計により示される開発途上国に疾病の特徴について説明できる2/3 14 疾病統計により示される開発途上国に疾病の特徴について説明できる3/3	6	疾病統計により示される日本の疾病の特徴について説明できる 1/3
9 疾病統計により示される先進国の疾病の特徴について説明できる 1/3 10 疾病統計により示される先進国の疾病の特徴について説明できる 2/3 11 疾病統計により示される先進国の疾病の特徴について説明できる 3/3 12 疾病統計により示される開発途上国に疾病の特徴について説明できる 1/3 13 疾病統計により示される開発途上国に疾病の特徴について説明できる 2/3 14 疾病統計により示される開発途上国に疾病の特徴について説明できる 3/3	7	疾病統計により示される日本の疾病の特徴について説明できる2/3
10 疾病統計により示される先進国の疾病の特徴について説明できる2/3 11 疾病統計により示される先進国の疾病の特徴について説明できる3/3 12 疾病統計により示される開発途上国に疾病の特徴について説明できる1/3 13 疾病統計により示される開発途上国に疾病の特徴について説明できる2/3 14 疾病統計により示される開発途上国に疾病の特徴について説明できる3/3	8	疾病統計により示される日本の疾病の特徴について説明できる3/3
11 疾病統計により示される先進国の疾病の特徴について説明できる3/3 12 疾病統計により示される開発途上国に疾病の特徴について説明できる1/3 疾病統計により示される開発途上国に疾病の特徴について説明できる2/3 14 疾病統計により示される開発途上国に疾病の特徴について説明できる3/3	9	疾病統計により示される先進国の疾病の特徴について説明できる 1/3
12 疾病統計により示される開発途上国に疾病の特徴について説明できる 1/3 13 疾病統計により示される開発途上国に疾病の特徴について説明できる 2/3 14 疾病統計により示される開発途上国に疾病の特徴について説明できる 3/3	10	疾病統計により示される先進国の疾病の特徴について説明できる2/3
13 疾病統計により示される開発途上国に疾病の特徴について説明できる2/3 14 疾病統計により示される開発途上国に疾病の特徴について説明できる3/3	11	疾病統計により示される先進国の疾病の特徴について説明できる3/3
14 疾病統計により示される開発途上国に疾病の特徴について説明できる3/3	12	疾病統計により示される開発途上国に疾病の特徴について説明できる 1/3
With planting to 3 th C it with the control of the	13	疾病統計により示される開発途上国に疾病の特徴について説明できる2/3
15 まとめ	14	疾病統計により示される開発途上国に疾病の特徴について説明できる3/3
	15	まとめ

回数	担 当	内 容	対応 (SBOs)
1	渋井 二三男	マーケティングとは何か	
2	//	マーケティングの概念	
3	//	マーケティングの体系と新製品開発	
4	//	医療品開発の対象となる疾病 1/2	
5	//	医療品開発の対象となる疾病2/2	
6	//	疾病統計により示される日本の疾病の特徴について 1/3	
7	//	疾病統計により示される日本の疾病の特徴について2/3	
8	//	疾病統計により示される日本の疾病の特徴について3/3	
9	//	疾病統計により示される先進国の疾病の特徴について 1/3	

回数	担 当	内 容	対応 (SBOs)
10	//	疾病統計により示される先進国の疾病の特徴について2/3	
11	//	疾病統計により示される先進国の疾病の特徴について3/3	
12	//	疾病統計により示される開発途上国に疾病の特徴について 1/3	
13	//	疾病統計により示される開発途上国に疾病の特徴について 2/3	
14	//	疾病統計により示される開発途上国に疾病の特徴について 3/3	
15	//	まとめ	

授業で行っているⅠ夫: あらかじめ学習目標とするキーワードを提示し、目標を明確にしている。できるだけ PC&NETにて演習・実習を体験し、より学習が効率化、着実化するよう努める。

- **モデル・コアカリ**: 1. マーケティングとは何か説明できる
- キュラムとの関連 2. マーケティングの概念を説明できる
 - 3. マーケティングの体系と新製品開発を説明できる
 - 4. 医療品開発の対象となる疾病を説明できる 1/2
 - 5. 医療品開発の対象となる疾病を説明できる2/2
 - 6. 疾病統計により示される日本の疾病の特徴について説明できる 1/3
 - 7. 疾病統計により示される日本の疾病の特徴について説明できる2/3
 - 8. 疾病統計により示される日本の疾病の特徴について説明できる3/3
 - 9. 疾病統計により示される先進国の疾病の特徴について説明できる 1/3
 - 10. 疾病統計により示される先進国の疾病の特徴について説明できる2/3
 - 11. 疾病統計により示される先進国の疾病の特徴について説明できる3/3
 - 12. 疾病統計により示される開発途上国に疾病の特徴について説明できる 1/3
 - 13. 疾病統計により示される開発途上国に疾病の特徴について説明できる 2/3 14. 疾病統計により示される開発途上国に疾病の特徴について説明できる3/3
 - 15. まとめ

成績評価方法: 1) 形成的評価 a) 知識: 小テスト、課題レポート、Web クラス講義資料などにより項目ごと に行う

c) 態度:受講態度(出席状況等)により評価する

2) 総括的評価 a) 知識:定期試験、レポート、中間テストなどにより総合的に評価する

c) 態度:受講態度(出席状況等)により評価する

教 科 書: 当日説明します

参 老 書:現代マーケティング論(武井寿、岡本慶一編著実教出版)

オフィスアワー: 渋井 二三男 火曜日 昼休み/週、可 講師室

記事項: 履修前に簡単な Excel などの PCskill と高校時代での数学を復習していただくと良いです。 ノートパソコンを持参してください。参加型授業にします。

教員からの一言: ベースが数学・英語、また、専門用語など難解な点もあるかと思いますが、必ず企業・研究所で はmarketingに遭遇するといっても過言ではない。是非、この際、専門的分析法を理解し、社会 に出てからも実務で活かしてもらいたい。

- ●選択科目Ⅱは前期に3単位以上を履修する。
- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

マーケティングⅡ(医薬品マーケティングⅡ)

Marketing (Medicine Marketing II)

1

学年 第6学年

科目分類 選 択

前期・後期 前 期

単 位

非常勤講師 渋井 二三男

学習目標 (GIO)

マーケティングとは、企業が市場や環境に適合し、存続していくにはどうすべきかを考え実行することである。本授業では、グローバル・スタンダードであるコトラーの体系をもとに、マーケティングの基本的事項について把握することを目的とします。また、製薬企業が存続するために、市場ニーズ、シーズを探る必要があります。薬剤市場病院を標準的に体系化された学術的展開を試みる。また、より企業の存続を確かなものにするために、マーケティング戦略を中心に解説する。

講師紹介

渋井二三男 城西短期大学教授

▋行動目標 (SBOs)

1	広義としてのマーケティング戦略について説明できる	
2	製品戦略マーケティングについて説明できる	
3	医療用医薬品で、日本市場での売上最上位の医薬品を挙げ、その理由を説明できる 1/3	
4	医療用医薬品で、日本市場での売上最上位の医薬品を挙げ、その理由を説明できる2/3	
5	医療用医薬品で、日本市場での売上最上位の医薬品を挙げ、その理由を説明できる3/3	
6	医療用医薬品で、世界市場での売上最上位の医薬品を挙げ、その理由を説明できる 1/3	
7	医療用医薬品で、世界市場での売上最上位の医薬品を挙げ、その理由を説明できる2/3	
8	医療用医薬品で、世界市場での売上最上位の医薬品を挙げ、その理由を説明できる3/3	
9	新規医薬品の価格を決定する要因について説明できる 1/2	
10	新規医薬品の価格を決定する要因について説明できる2/2	
11	薬価基準について説明できる 1/2	
12	薬価基準について説明できる2/2	
13	ジェネリック医薬品について説明できる 1/2	
14	ジェネリック医薬品について説明できる 2/2	
15	まとめ	

- ¥b	+D 3//		++# (ODO-)
回数	担当	内 容	対応 (SBOs)
1	渋井 二三男	広義としてのマーケティング戦略について	
2	//	製品戦略マーケティングについて	
3	//	医療用医薬品で、日本市場での売上最上位の医薬品 1/3	
4	//	医療用医薬品で、日本市場での売上最上位の医薬品2/3	
5	//	医療用医薬品で、日本市場での売上最上位の医薬品3/3	
6	//	医療用医薬品で、世界市場での売上最上位の医薬品 1/3	
7	//	医療用医薬品で、世界市場での売上最上位の医薬品2/3	
8	//	医療用医薬品で、世界市場での売上最上位の医薬品3/3	
9	//	新規医薬品の価格を決定する要因について説明できる 1/2	
10	//	新規医薬品の価格を決定する要因について説明できる2/2	
11	//	薬価基準について説明できる 1/2	

٦

6年

回数	担 当	内 容	対応 (SBOs)
12	//	薬価基準について説明できる 2/2	
13	//	ジェネリック医薬品について説明できる 1/2	
14	//	ジェネリック医薬品について説明できる2/2	
15	//	まとめ	

授業で行っている工夫: あらかじめ学習目標とするキーワードを提示し、目標を明確にしている。できるだけ PC&NETにて演習・実習を体験し、より学習が効率化、着実化するよう努める。

モデル・コアカリ: 1. 広義としてのマーケティング戦略について説明できる

- キュラムとの関連 2. 製品戦略マーケティングについて説明できる
 - 3. 医療用医薬品で、日本市場での売上最上位の医薬品を挙げ、その理由を説明できる 1/3
 - 4. 医療用医薬品で、日本市場での売上最上位の医薬品を挙げ、その理由を説明できる2/3
 - 5. 医療用医薬品で、日本市場での売上最上位の医薬品を挙げ、その理由を説明できる3/3
 - 6. 医療用医薬品で、世界市場での売上最上位の医薬品を挙げ、その理由を説明できる 1/3
 - 7. 医療用医薬品で、世界市場での売上最上位の医薬品を挙げ、その理由を説明できる2/3
 - 8. 医療用医薬品で、世界市場での売上最上位の医薬品を挙げ、その理由を説明できる3/3
 - 9. 新規医薬品の価格を決定する要因について説明できる 1/2
 - 10. 新規医薬品の価格を決定する要因について説明できる2/2
 - 11. 薬価基準について説明できる 1/2
 - 12. 薬価基準について説明できる2/2
 - 13. ジェネリック医薬品について説明できる 1/2
 - 14. ジェネリック医薬品について説明できる 2/2
 - 15. まとめ

成 績 評 価 方 法: 1) 形成的評価 a) 知識: 小テスト、課題レポート、Web クラス講義資料などにより項目ごとに

c) 態度:受講態度(出席状況等)により評価する

2) 総括的評価 a) 知識: 定期試験、レポート、中間テストなどにより総合的に評価する

c) 態度:受講態度(出席状況等)により評価する

書: 当日説明します 教 科

書:現代マーケティング論(武井 寿、岡本 慶一 編著 実教出版)

オフィスアワー: 渋井 二三男 火曜日 昼休み/週、可 講師室

記事項: 履修前に簡単なExcelなどのPCskillと高校時代での数学を復習していただくと良いです。 ノートパソコンを持参してください。参加型授業にします。

教員からの一言: ベースが数学・英語、また、専門用語など難解な点もあるかと思いますが、必ず企業・研究所で はmarketingに遭遇するといっても過言ではない。是非、この際、専門的分析法を理解し、社会 に出てからも実務で活かしてもらいたい。

- ●選択科目Ⅱは前期に3単位以上を履修する。
- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

マーケティングⅢ(医薬品マーケティング戦略)

Marketing III(Pharmaceutical Marketing Strategy)

1

学 年 第6学年

科目分類 選 択

前期・後期 前 期

単位

非常勤講師 林 真希子

学習目標 (GIO)

社会、経済、文化等あらゆる面でグローバリゼーションの時代を迎えた現在、医薬品市場では「良い薬を作れば売れる」時代は終わり、「売れる薬を作り、売れる方法で売る」時代へと移行した。つまり、これまで医薬品市場ではあまり必要とされていなかった「戦略的マーケティング」の概念がいよいよ医薬品市場にも入り込み、事業を展開する上で不可欠な要素となった。本講義では、最初にマーケティングに関する一般的な知識を習得する。次に、当該知識を医薬品マーケティングに展開させ、医薬品の研究開発から販売までの各プロセスにおいて具体的にどのようなマーケティングが実施されているのかについて学ぶ。

▋行動目標 (SBOs)

1	マーケティングの基礎用語を説明できる。
2	マーケティング戦略の一般的なプロセスを説明できる。
3	マーケティング戦略の各プロセスについて、重要ポイントを列挙できる。
4	マーケティングの実例から戦略ポイントを抽出できる。
5	近年の業界再編を説明できる。
6	医薬品の市場規模の推移及び現状を説明できる。
7	医薬品に対する市場のニーズを説明できる。
8	医薬品産業の特徴と課題を説明できる。
9	医薬品マーケティングの特徴を説明できる。
10	医薬品の研究開発における戦略ポイントを説明できる。
11	医薬品の価格設定(薬価基準制度)の概要を説明できる。
12	医薬品の流通における戦略ポイントを説明できる。
13	医薬品のプロモーションにおける戦略ポイントを説明できる。
14	医薬品マーケティングにおける情報の役割を説明できる。

回数	内 容	対応 (SBOs)
1	オリエンテーション、マーケティング概論:基礎知識、市場調査	1、2、3
2	マーケティング概論:STP分析、MMの策定	1, 2, 3
3	マーケティング概論:演習	1、2、3
4	マーケティング概論:映画「スーパーの女」から学ぶマーケティング戦略	4
5	マーケティング概論:映画「スーパーの女」から学ぶマーケティング戦略	4
6	マーケティング概論:演習	4
7	医薬品業界:近年の動向	5、6、7、8
8	医薬品業界:市場ニーズ	5, 6, 7, 8

選択科次

回数	内 容	対応 (SBOs)
9	医薬品業界:演習	5、6、7、8
10	医薬品マーケティング:概論、研究開発、価格	9、10, 11
11	医薬品マーケティング:流通、プロモーション、情報	12、13、14
12	医薬品マーケティング:演習	9、10、11、12、 13、14
13	最終試験	

授業で行っている工夫:最初に一般的なマーケティングを学習することで、マーケティングを学んだことがない学生でも無理なく参加できるとともに、その後の医薬品マーケティングを円滑に学習できるようにした。各題目ごとにキーワードを提示し、重要ポイントを明確にした。各授業日の最後にその日の内容に関する小テストを実施することで、効果的に復習できるようにした。

モデル・コアカリ:薬学アドバンスト教育

キュラムとの関連

成績評価方法:1) 形成的評価 a) 知識:授業日ごとに行う小テスト及び最終試験により評価する。

b) 態度:受講態度(出席状況等)により評価する。

2) 総括的評価 a) 小テスト、最終試験、授業に対する質問、疑問、感想の内容(出席カードに記載) により総合的に評価する。

b) 受講態度(出席状況等)により評価する。

教 科 書:作成して配布する。

参考:「コトラーのマーケティング入門」P. コトラー他(ピアソンエデュケーション)

「コトラー&ケラーのマーケティング・マネジメント 基本編」P. コトラー他 (ピアソンエデュケーション)

「ゼミナール マーケティング入門」石井淳蔵他(日本産経新聞社)

「よくわかる医薬品業界」長尾剛司(日本実業出版社)

「医薬品マーケティングの基本戦略」M. スミス他(日経BP社)

「医療用医薬品マーケティング」前田英二(メディカルレビュー社)

「日経業界地図2011年版」(日本経済新聞出版社)

「[図解]わかる! MBA」池上重輔 (PHP文庫)

オフィスアワー: いつでも可。 メール (vieillerose@yahoo.co.jp) にて対応。

特記事項:授業内容は、変更する場合があります。

教員からの一言:皆さんの回りにある製品・サービスには、それぞれ試行錯誤されたマーケティングが展開されています。製品・サービスを手にした際には、どのようなマーケティングが実施されているのか、どう改良すればもっと当製品・サービスが『売れる』ようになるのか考えてみましょう。

- ●選択科目Ⅱは前期に3単位以上を履修する。
- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

マーケティングN Marketing IV

生年 第6学年 科目分類 選択 前期·後期 前期 単位 1

江成 泰樹 実務実習室

今井 達男 実務実習室

学習目標 (GIO)

製薬企業の使命、存在意義を学び、グローバル化に伴う製薬企業の世界戦略について触れる。さらに、市場志向を取り入れた経営・製品・販売・人材育成戦略と昨今の医薬品卸の急激な再編成にいかに製薬企業が対応していくべきか、その流通政策を学ぶ。また抗がん剤及び抗真菌薬、ここでは水虫治療薬を取り上げて、具体的にその市場での販売マーケティングの成功例や失敗例を提示しマーケティングの実際を分かり易く学ぶ。

講師紹介

岩崎 真人 武田薬品工業株式会社 製品戦略部長

吉田 二浪 武田薬品工業株式会社 医薬営業本部 流通推進部長

内堀 雅之 東薬55年卒、サンド薬品入社、ヤンセン協和、ノバルティスを経て、セルジー

ン(株) マーケティングアソシエイト ディレクター

今井 達男 本学実務実習室 元武田薬品工業株式会社

▋行動目標 (SBOs)

1	製薬企業の社会的使命を説明できる
2	製薬企業の国際医薬品戦略を理解し説明できる
3	企業経営における医薬品の薬効市場志向を理解し説明ができる
4	製薬企業の国内における医薬品創出目的を理解し説明できる
5	製薬企業の医薬品の国内流通について理解し説明できる
6	製薬企業の医薬品流通政策を説明できる
7	製薬企業の販売マーケティングに関わるMRの使命と人材育成戦略について理解し説明できる
8	具体的薬効群でのマーケティングのポイントが理解でき、説明できる
9	抗がん剤のマーケティングの実際を理解し、説明できる
10	抗真菌薬のマーケティングの実際を理解し、説明できる
11	疾病と治療の知識の必要性を認識することができる
12	語学力の必要性が認識できる

回数	担 当	内 容	対応 (SBOs)
1	岩崎真人	マーケティングにおける製品戦略 1	2、3、4、12
2	岩崎真人	マーケティングにおける製品戦略2	2, 3, 4, 12
3	岩崎真人	マーケティングにおける製品戦略3	2, 3, 4, 12
4	吉田二浪	マーケティングにおける流通戦略 1	5、6、7
5	吉田二浪	マーケティングにおける流通戦略2	5、6、7
6	吉田二浪	マーケティングにおける流通戦略3	5、6、7
7	内堀雅之	抗真菌薬のマーケティング 1	8、10、11、 12

X 6年次

回数	担 当	内 容	対応 (SBOs)
8	内堀雅之	抗真菌薬のマーケティング2	8、10、11、 12
9	内堀雅之	抗真菌薬のマーケティング3	8、10、11、 12
10	内堀雅之	抗がん剤のマーケティング 1	8, 9, 11, 12
11	内堀雅之	抗がん剤のマーケティング2	8, 9, 11, 12
12	内堀雅之	抗がん剤のマーケティング3	8, 9, 11, 12
13	今井達男	マーケティングにおける経営戦略(国際グローバル) 1	1, 2, 7, 12
14	今井達男	マーケティングにおける経営戦略(国際グローバル)2	1, 2, 7, 12
15	今井達男	マーケティングにおける経営戦略(国際グローバル)3	1, 2, 7, 12
		レポート作成	

授業で行っている工夫: 理論だけではなく、実際の製薬企業の業務に携わっている講師を招聘することにより、実体験をベースとしたマーケティング戦略とその実際について直接、最新情報を学ぶことが出来る。

モデル・コアカリ:薬学アドバンスト教育

キュラムとの関連

成績評価方法:1)形成的評価

a):知識:授業日ごとにレポートを提出しその内容で評価する。

b):技能

c):態度:受講態度(出席状況等)により評価する。

2) 総括的評価

a):知識:授業日ごとのレポートならびに最終のまとめのレポートにて総合評価する。

b):技能

c):態度:受講態度(出席状況等)により評価する。

教科書なし参考書:なし

オフィスアワー:今井達男 武田薬品工業株式会社連絡先一実務実習室

江成泰樹 セルジーン株式会社連絡先一実務実習室

所属教室:

教員から一言: マーケティングは企業に就職するものだけのものではない。研究・開発・製造・品質保証・販売等の全てが関連しており、これらは市場志向を踏まえた上で成される。将来、薬局、病院等へ進む人にとっても、ここでしか学べない活きたマーケティングを紹介する。

医療経済学特論 年 第6学年 津谷 教授 (客員) 喜一郎

Advanced Topics in Health Economics and Pharmacoeconomics

単 位

1

科目分類 選 択

非常勤講師 五十嵐 中

学習目標 (GIO)

医療経済評価・薬剤経済評価について、その理解に必要な統計学や医療制度に関する知識を復習 するととともに、最先端の分析手法と政策への応用の実例を学ぶ。

前 期

前期・後期

▋行動目標 (SBOs)

1	医療経済学・薬剤経済学の基礎を概観する。
2	薬剤経済学を学ぶ際の土台としての、EBM (科学的根拠に基づく医療)や生物統計学の基礎知識を復習する。
3	薬剤経済評価の基礎的な分析手法を理解する。
4	応用的な薬剤経済評価の手法を理解する。
5	薬剤経済評価の政策への応用例について、世界・日本の事例を理解する。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	津谷	医療経済学·概論	1
2、3	五十嵐	薬剤経済学とEBM · 生物統計学 (1)	2
4、5、6	五十嵐	薬剤経済学とEBM · 生物統計学 (2)	2
7、8	五十嵐	薬剤経済分析・基礎編(基礎的な分析手法の復習と、コスト・ アウトカムの評価法)	3
9、10、 11、12	五十嵐	薬剤経済分析・応用編(感度分析・モデル分析・シミュレーション)	4
13、14、 15	五十嵐	社会の中での薬剤経済評価一政策決定への応用法	5

授業で行っている工夫: パワーポイントを眺めるだけの「受け身」の授業でなく、能動的に参加できるような授業をめざす。

モデル・コアカリ: C18 薬学と社会 (2) 社会保障制度と薬剤経済

キュラムとの関連

成績評価方法: 学期末試験ないしレポートおよび出席状況を総合して評価する。

教 書: 五十嵐中、 佐條麻里. 医療統計わかりません!!. 東京図書; 2010.

- ●選択科目Ⅱは前期に3単位以上を履修する。
- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

VI

病原微生物学特論(感染制御学特論)

Advanced Topics in Pathomicrobiology (Infection Control Science) 択

選

科目分類

太田 授 教 准教授 下枝 貞彦

第6学年

学習目標 (GIO)

学 年

> 感染症の原因となる微生物は、細菌ををはじめとして、真菌、ウイルス、原虫、リケッチアなど が関与する。また、時代の経過とともに主役となる微生物は変貌しており、薬剤耐性菌といった 治療困難な感染症も多発してきている。特に病院内では、多くの患者や医療従事者が同居してい る環境にあるため、易感染性患者も多く存在する。この特論では、感染症の原因となる微生物と 感染予防と治療について学び感染制御をするための十分な知識を習得する。

前期・後期

前 期 単 位

1

1	感染症の歴史と抗菌薬の歴史を学び概説できる。
2	感染症の原因微生物を学び概説できる。
3	エビデンスに基づいた感染制御を概説できる。
4	抗菌薬の作用機序と薬剤耐性について概説できる。
5	抗菌薬の適正使用について概説できる。
6	抗菌薬と相互作用を持つ薬剤について概説できる。
7	消毒薬の適正使用について概説できる。
8	感染制御における薬剤師の役割を概説できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
5	太田 伸	 概要説明、 感染症の歴史と抗菌薬の歴史 感染症の原因微生物 エビデンスに基づいた感染制御 抗菌薬の作用機序と薬剤耐性 抗菌薬の適正使用 抗菌薬と相互作用を持つ薬剤 消毒薬の適正使用 感染制御における薬剤師の役割 	1~8
2	下枝 貞彦	 真菌による感染症 抗真菌薬の薬物療法について 	4~6

授業で行っている工夫: 感染症例を提示するとともに考える力を養うために課題を学習させる。 モデル・コアカリ: 医療現場で行われる院内感染予防について学習し、実践的な知識を養う。

キュラムとの関連

成績評価方法: 出席および試験成績による評価

書:特に指定教科書はない。

参 書:薬剤師のための感染制御マニュアル第2版(日本病院薬剤師会編集)

新しい微生物学第3版(広川書店)

感染症診断スタンダートマニュアル(羊土社)

オフィスアワー:太田 伸 いつでも可。ただし、要予約 臨床薬剤学教室

所属教室:太田伸臨床薬剤学教室医療棟4階

教員からの一言: 感染制御は、実践的な総合科目ですので、感染症や抗菌剤について復習することができる。

- ●選択科目Ⅱは前期に3単位以上を履修する。
- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

医薬品生産特論

幸彦

Advanced Topics in Drug Discovery 前

期

1

単 位

年 第6学年 新槇

学習目標 (GIO)

教 授

> 分子生物学、免疫学、遺伝子工学などの目覚ましい発展により新たなコンセプトにより多くの医薬 品が開発され、臨床の場に供されている. 本特論では、最新の医薬として注目されている、抗体医 薬、分子標的薬、核酸医薬、ワクチンについて、それら医薬品の開発の現状と展望について修得する。

前期・後期

講師紹介

新槇幸彦 薬物送達学教室

科目分類

岩崎文男 埼玉県立がんセンター 薬剤部長 中澤隆弘 アンジェスMG(株)研究開発本部長 富谷嘉洋 中外製薬(株)オンコロジー学術情報部長

選 択

▍行動目標 (SBOs)

1	リポソーム製剤について説明できる.
2	予防接種の原理とワクチンについて説明できる.
3	アジュバントの役割について説明できる.
4	制御性T細胞の役割について説明できる.
5	抗体医薬、核酸医薬、分子標的薬について説明できる.

授業内容

回数	担 当	内 容	対応 (SBOs)	
1-2	DDSキャリアーおよびimmunomodulaterとしてのリポソームについて		C10、C16	
3-4	新槇幸彦	ワクチンおよび抗炎症薬としてのリポソームの可能性につい て	C10, C16	
5-7	岩崎文男	最新のDDS製剤の医療現場における貢献について	C14、C16	
8-10	中澤隆弘	核酸医薬の開発の現状と展望について	C16、C17	
11-13	富谷嘉洋	抗体医薬および分子標的薬開発の現状と展望について	C16	
14-15	新槇幸彦	総合討論		

モデル・コアカリ: C10生体防御 キュラムとの関連

- (1) 身体をまもる
- (2) 免疫系の破綻・免疫系の応用
- C14薬物治療
 - (5) 病原微生物・悪性新生物と戦う
- C16製剤化のサイエンス
 - (2) 剤形をつくる
 - (3) DDS
- C17医薬品開発と生産
 - (3) バイオ医薬品とゲノム情報

成績評価方法:講義への出席とレポートの内容と提出状況で判断する.

書: なし 科

考 書:適宜、指示します.

オフィスアワー: 新槇幸彦 いつでも可. ただし、事前に連絡ください. 研究1号館3階302号室

所属教室:新槇幸彦 薬物送達学教室

- ●選択科目Ⅱは前期に3単位以上を履修する。
- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

IX

多变量解析 Multivariate Statistics

学 年 第6**学**年 科目分類 選 択 前期·後期 前期 単 位 1

准教授 大河内 広子

学習目標 (GIO)

統計学には次のものがあります。

- ①記述統計……データの傾向を要約して上手く表すこと
- ②推測統計……手元にあるデータ(母集団からの標本)から、母集団に関する情報を推測しようとすること
- ③多変量解析…複数の変数(変量)の関係を整理してわかりやすくする。例えば、たくさんの変数をより少ない変数にまとめる、ある変数を他の変数で予測・説明するなど。

この授業では、2年生前期に学習した記述統計や推測統計の内容を必要に応じて復習しながら、上記の「③多変量解析」について学習します。授業には、1年の「数学」で使った「線形代数学」の教科書と、2年の「応用統計学」の教科書を持参して下さい。

▋行動目標 (SBOs)

1	データは散らばってこそ価値があるのだが、散らばっているデータの性質をどのように一言で表すか? その一つのやり方である「代表値」「散布度」について説明でき求められる。
2	尺度水準について説明できる。
3	平均と中央値について、それぞれの代表値としての性質を説明できる。
4	正規分布について、平均値、標準偏差を説明できる。
5	正規分布を標準化できる。
6	共分散について説明できる。
7	相関係数について説明でき、計算できる。
8	相関と回帰について説明でき、計算できる。
9	実際には相関がないのに、高い相関係数が得られる場合のいくつかの例を理解し説明できる。
10	実際には相関があるのに、弱い相関のように見える場合のいくつかの例を理解し説明できる。
11	行列の演算、逆行列、固有値・固有ベクトルについて、説明でき、計算できる。(1年の「数学」の復習と発展。)
12	重回帰分析について、基本事項を説明でき、計算できる。
13	主成分分析について、基本事項を説明でき、計算できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1, 2	大河内	統計解析はなぜ必要か、データは何を反映しているか、データのちらばりとは、データを要約するには など。.	1, 2, 3, 4, 5
3、4	大河内	分散、共分散、相関係数、相関と回帰	6、7、8、9、10
5, 6	大河内	行列と行列式、固有値と固有ベクトル	11
7~10	大河内	重回帰分析の基本的な考え方と、実際の計算法	12
11~14	大河内	主成分分析の基本的な考え方と計算法	13

授業で行っている工夫:・授業運営では、具体的な例を用いて実際に解析することを重視します。

- ・授業内容をより理解できるように、プリント等を配布します。
- ・学習内容への理解を学生同十で互いに高めあえるように、適宜、グループ討論や口頭発表を実 施します。

モデル・コアカリ:【生物統計の基礎】

- キュラムとの関連 1) 帰無仮説の概念を説明できる。
 - 2) パラメトリック検定とノンパラメトリック検定の使い分けを説明できる。
 - 3) 主な二群間の平均値の差の検定法(tー検定、Mann-Whitney U検定)について、適用で きるデータの特性を説明し、実施できる。(知識・技能)
 - 4) カイ2乗検定の適用できるデータの特性を説明し、実施できる。(知識・技能)
 - 5) 最小二乗法による直線回帰を説明でき、回帰係数の有意性を検定できる。(知識・技能)
 - 7) 主な多変量解析の概要を説明できる。

【臨床への応用】

4) リスク因子の評価として、オッズ比、相対危険度および信頼区間について説明し、計算できる。 (知識・技能)

成績評価方法: 1) 形成的評価 a) 知識:プリント等での課題や演習問題の実施によって理解を深める。

- b) 技能:演習時間に具体的な問題に触れ、こまめなフィードバックをする。
- 2) 総括的評価 a) 知識: 主に口頭発表やレポート課題による。出席状況やグループ討論への参 加度なども考慮する。

書:次を持参して下さい。

- ・1年生のときの「数学」で使用した「線形代数」の教科書
- ・2年生のときの「応用統計学」の教科書

オフィスアワー: 大河内 「数学関連の学習支援 | の時間帯 (水曜日: 16時~18時、土曜日 10時30分~14時)、 「数学関連の学習支援」の会場。他の時間帯は要予約。

所属教室:大河内 応用統計学研究室 研究2号棟 607号

- ●選択科目Ⅱは前期に3単位以上を履修する。
- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

治験の実際(創薬育薬分野における薬剤師)

Clinical Trial Management ~Pharmacists in drug development, approval and vigilance~

学年 第6学年 科目分類 選択 前期·後期 前期 単位 1

教授 内野克喜 講師 中島 由紀

学習目標 (GIO)

患者さんに有効な薬を届け、しかも安全に使っていただくために、薬剤師は様々な立場から支えることを求められている。この講義では、治験の実際を紹介するとともに、治験の前後にある創薬・育薬分野、規制当局で活躍する薬剤師の方々にご講演いただく。各分野での状況とその分野で薬剤師はどんな貢献が求められているのかについてお話を伺う予定である。薬の専門家としての基本修得に努め、進路について考えている6年生の今、それぞれが自分に課せられている薬剤師の使命を再確認することを目的とする。

|講師紹介

今井達男 本学実務実習室 元武田薬品工業株式会社

加藤一典 第一三共株式会社 信頼性保証本部

鹿野真弓 医薬品医療機器総合機構 生物系審査第二部

内野克喜 本学医薬品安全管理学教室 中島由紀 本学医薬品安全管理学教室

行動目標 (SBOs)

1	病院での治験について説明できる。
2	医薬品開発の流れを説明できる。
3	日本の治験の現状を説明できる。
4	製造販売後調査について説明できる。
5	承認審査の流れを説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1-3	中島由紀、内野克喜	病院における治験の実際	1
4-6	今井達男	医薬品開発の実際	2
7-9	中島由紀	日本の治験の現状	3
10-12	加藤一典	製造販売後調査の実際	4
13-15	鹿野真弓	承認審査の実際	5

授業で行っている工夫:外部講師による講義終了後には、講義内容に関するレポートを提出してもらいます。これによって、 講義内容の理解度を確認します。

モデル・コアカリ: C17(1)、(4)

キュラムとの関連

成績評価方法:出席数、レポート、テスト

教 書:使用しない

参考書:日本薬学会編:スタンダード薬学シリーズ8「医薬品の開発と生産」(東京化学同人)

医薬品の開発と生産 一レギュラトリーサイエンスの基礎一 (じほう)

オフィスアワー: 中島 由紀 メールで予約してください。yukinaka@toyaku.ac.jp ドラッグラショナル(DR) 研究開発センター 4階 医薬品安全管理学教室

所属教室:中島 由紀 医薬品安全管理学教室

- ●選択科目Ⅱは前期に3単位以上を履修する。
- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1 週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

病態生理学特論 Advanced Topics in Pathophysiology

学 年	第6学年	科目分類 選 択	前期・後期 前期	単 位 1
教 授	田野中浩一	教授 市田	公美 教授 立川	英一
准教授	山田 純司	准教授 高木	教夫	

学習目標 (GIO)

循環器、中枢、内分泌、免疫および代謝疾患に関し、コアカリキュラムの内容よりもさらに高度な内容について最新の研究成果を加えて解説し、医療および創薬研究を行うための知識および技術への理解を深める。

▋講師紹介

渡部球也 東京薬科大学生命科学部心血管医科学研究室教授·昭和大学医学部内科学講座客員教授 柳原延章 産業医科大学医学部薬理学教室教授

行動目標 (SBOs)

主な循環障害および代謝疾患の病態生理について理解し、薬物治療を含めたそれらの治療について、その研究と治療薬に関する最近の動向を概説できる。

1	糖尿病および脂質異常症の発症および進展因子に関連する新たな知見を説明できる。
2	糖尿病および脂質異常症治療に関する新たな知見を説明できる。
3	脳虚血後の脳実質の病態生理学的な変化に関する新たな知見を説明できる。
4	脳虚血/再灌流障害の薬物治療に関する新たな知見を説明できる。
5	高尿酸血症の発症機序に関して新たな知見を説明できる。
6	高尿酸血症の治療に関する新たな知見を説明できる。
7	心筋虚血およびその後の心機能低下に関する新たな知見を説明できる。
8	虚血性心疾患の治療に関する新たな知見を説明できる。
9	自律神経系の生体調節に関する新たな知見を説明できる。
10	自律神経系の疾患およびカテコラミンが関与する疾患に関する新たな知見を説明できる。
11	動脈硬化症の発症機序に関する新たな知見を説明できる。
12	動脈硬化症の治療に関する新たな知見を説明できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1, 2, 3	山田純司	糖尿病や脂質異常症を中心に、論文紹介を交えながら代謝疾 患の病態生理と薬物治療をめぐる最新の話題を紹介する。	1, 2
4、5、6	高木教夫	虚血性脳血管障害を中心に、論文紹介を交えながら中枢神経 疾患の病態生理と薬物治療をめぐる最新の話題を紹介する。	3、4
7、8、9	市田公美	最近の全ゲノム関連解析の結果を踏まえて、尿酸を輸送する トランスポーターについての最新の知見を解説します。	5、6
10, 11, 12	田野中浩一	心筋虚血の病態解析を中心に、論文紹介を交えながら心疾患 の病態生理と薬物治療をめぐる最新の話題を紹介する。	7、8
13, 14, 15	立川英一、柳原延章	自律神経系の調節について概説し、その自律神経不調節による病態や自律神経バランス測定の実例とカテコールアミン研究についての最近の話題を紹介する。	9、10
16、17	渡部琢也	動脈硬化症の病態解析を中心に、最新の病態生理および治療 に関する話題を紹介する。	11、12

IX 選3 択年

授業で行っている工夫: 従来の大学院薬学研究科の修士課程での講義に相当するもので、1年次から5年次の講義をさらに発展させることを目的に開講されるものです。教員(講師)と学生が直接意見交換しながら、学生が理解を深められるように講義を進めて行きます。教員は、最新の研究が薬物開発を含めた疾病への新たな治療法の開発にどの様に結びつくかについて解説を行うようにする。

モデル・コアカリ: モデル・コアカリキュラムの内容を発展させたもので、C8 生命体の成り立ち、C13 薬の効キュラムとの関連 くプロセス、C14 薬物治療に関連している。これらの中で疾患を中心に専門性の高い内容となる。

成 績 評 価 方 法: 出席に加え、レポート等、各講義担当者の評価を集計し、総合的に評価する。受講態度不良ある いは出席不良の学生には単位認定を行わない。

オフィスアワー: 田野中 在室時はいつでも可(ただし、予め連絡を取ること) 研究2号館5階

所 属 教 室:田野中 分子細胞病態薬理学教室

特 記 事 項: 基礎から臨床分野で行われている様々な研究が、疾病の理解および新たな治療法の開発に応用されています。研究に立脚した薬学教育の一環として本講義が実施されます。

教員からの一言:単に聴講するだけではなく、講師への積極的な質問を行い、薬学教育の中の研究の重要性を理解 してください。

- ●選択科目Ⅱは前期に3単位以上を履修する。
- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

選択科

医薬品開発特論 I (構造有機化学特論)

Advanced Topics in Drug Development I (Advanced Structural Theory of Organic Chemistry)

学 年 第6学年 科目分類 選 択 前期·後期 前期 単 位 1

教授 田口 武夫

学習目標 (GIO)

本講義は「構造有機化学特論」を副題とし、天然物をはじめとする有機化合物、医薬品や酵素・タンパク質・DNAのような生体関連物質の構造解析に必須なNMRについて、基本的な原理をきちんと理解し、さらに特殊測定を含めた実践的なNMR解析について学ぶ。加えて、ゲノム解析からの分子標的の創出とそのタンパク質構造と有機分子の相互作用の解析、ならびに構造的に多様性に富む天然物を用いたケミカルバイオロジーを基盤とする創薬研究について学ぶ。

講師紹介

楠見 武徳 東京工業大学理工学研究科グローバル COE 特任教授

原村 昌幸 中外製薬株式会社鎌倉研究所 創薬資源研究部

荒井 緑 千葉大学大学院薬学研究院

▋行動目標 (SBOs)

1	NMRによる構造解析の基本原理が説明できる。
2	比較的簡単な構造の有機分子のNMRによる構造解析ができる。
3	NMRの相関スペクトルについて説明できる。
4	ゲノム創薬、オミクス技術の創薬への応用について具体例をあげて説明できる。
5	天然物化学を基盤とするケミカルバイオロジーについて具体例をあげて説明できる。

授業内容

回数	担当	内 容
1-6	楠見 武徳	NMRの基礎から特殊測定まで: NMRスペクトルは医薬品や酵素・タンパク・DNAなどの生体物質の構造を解析するための優れた方法である。本講義ではNMRの簡単な原理とスペクトルの解析法について特殊測定も含めてわかりやすく解説する。さらに、コーヒー(混合物の水溶液)中のカフェインのシグナルを直接検出できる最新のNMR技法についても紹介する。
7, 8	原村 昌幸	ゲノム創薬(オミクス技術の創薬への応用の実際): ヒトゲノムの解読完了以来、ゲノミクス、プロテオミクス、バイオインフォマティクスといったオミクス技術が、積極的に創薬研究に応用されている。本講義では、(1)ゲノム解析からの研究の流れ(2)オミクス技術の発展と現状(3)オミクス技術の創薬への応用について解説する。
9、10	荒井緑	多様性志向型合成と天然物を用いたケミカルバイオロジー: 本講義では、多様性志向型合成による様々な化合物合成(コンビナトリアル合成)やケミカルゲノミクスを用いたケミカルバイオロジーについて解説する。また、細胞やタンパク質を用いたハイスループットアッセイの構築やそれを用いた、天然物を基盤とする抗がん剤リード化合物や神経再生医薬リード化合物探索について紹介する。
11-15	田口武夫ほか	課題演習: 有機化合物の構造解析に関する課題演習について自学習により解答を作成する。

成績評価方法:(1) 出席と受講態度および(2) 提出された演習課題レポートを総合的に評価する。

教 科 書: 教科書の指定はありません。講義担当者の配布資料を用いる。

オフィスアワー: 田口 武夫 いつでも可。但し、要事前連絡。 教授室 所 属 教 室: 田口 武夫 有機合成化学教室 研究2号館3階304

特	記	事	項:	【時間割】										
	回数		回 数	月日(曜日)	時 限	担 当								
				1、2、3、4	4月19日 (火)	2、3、4、5	楠見							
				5、6	4月20日 (水)	4、5	楠見							
				7、8	5月31日 (火)	2、3	原村							
				9、10	6月23日 (木)	4、5	荒井							
				11-15	特定せず		課題演習(自習)							

- ●選択科目Ⅱは前期に3単位以上を履修する。
- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

医薬品開発特論 Ⅱ (有機合成化学特論)

Advanced Topics in Drug Development II (Advanced Synthetic Organic Chemistry)

学年 第6学年 科目分類 選択 前期・後期 前期 単位

教授 田口 武夫

学習目標 (GIO)

有機合成化学は医薬品、低分子材料、高分子材料など広範な応用分野で不可欠な研究領域であり、日進月歩その発展には基礎から応用まで目覚ましいものがある。本講義は「有機合成化学特論」を副題とし、5名の講師にそれぞれの研究分野の基礎的解説と最先端科学およびご自身の研究を取り上げて講義いただく。多方面で展開されている有機合成化学の力量と魅力を伝え、これまでに習得してきた有機化学関連の知識のさらなる深化と研究における問題解決への取り組みについて学ぶ。

講師紹介

平尾 一郎 理化学研究所 生命分子システム基盤研究領域 核酸合成生物学研究チーム

竹安 巧 帝人ファーマ株式会社 製薬技術研究所原薬製造技術グループ

山田 徹 慶応義塾大学理工学部化学科 教授

林 良雄 東京薬科大学薬学部 教授 松本 隆司 東京薬科大学薬学部 准教授

授業内容

回数	担当	内 容
1, 2	平尾一郎	核酸化学: 核酸は遺伝子の構成成分で生命機能の根幹に関わる役割を演じている。さらに、核酸を人為的に構造修飾することにより新しい機能の創出が可能となる。本講義では、(1)遺伝子の本体である核酸の化学的性質と物性(2)核酸(DNAとRNA)の生物機能と核酸医薬品(3)新たな人工核酸を作り出す合成生物学について解説する。
3, 4	竹安巧	プロセス化学:幅広い有機合成技術を上手く組み合わて、医薬品の開発期間の短縮に加え、コストと品質の面で優れた医薬品原薬を安定的に製造する方法を見出すことが、医薬品製造におけるプロセス化学の役割であり、小スケールの実験室レベルの研究とは大いに異なった特色がある。講義では、こうした医薬製造現場におけるプロセス化学の展開を実例を取り上げて解説する。
5, 6	山田 徹	有機金属化学と触媒的不斉合成: 遷移金属元素を含む触媒の合成化学は現代社会を支える物質の供給には欠かせない ツールとなっている。2001年、2005年、2010年とたて続けにこの分野の研究 に対してノーベル化学賞が授与されたことがその重要性をよく物語っている。本講 義では、(1) 有機金属化学の基礎(2) 有機金属を触媒とする精密合成反応(3) 触 媒的不斉合成反応の開発動向について解説する。
7, 8	林 良雄	固相有機合成とコンビナトリアル化学: 創薬研究では、数多くの有機化合物から薬理活性を有する化合物を探索(スクリーニング)し、医薬品の基となるリード(先導)化合物を発掘する。この目的のために何十万個もの有機化合物を用意する必要がある。そこで生まれたのが、数多くの化合物を一度に作り出す「コンビナトリアル化学」である。本講義では、コンビナトリアル化学の誕生と応用を解説するために(1)固相ペプチド・有機化学(2)コンンビナトリアル化学(3)多成分反応(Multi – Component Reaction; MCR)について事例を含めて解説する。
9、10	松本 隆司	反応開発と天然物合成: 有機化学は、自然が生み出す化合物すなわち天然物を、自らの手で作ろうとしたところから始まった。以降も、新しい構造をもった化合物の発見とそれをどうしたら作れるかという「自然との知恵比べ」が、有機化学の発展を促してきた。そのような天然物の合成研究がもたらす新しい有機反応や方法論の開発について、ケース・スタディーを行ないたい。

選択科

XI 実習科

 回数
 担当
 内容

 11-15
 田口武夫ほか
 有機化学課題演習: 有機化合物の性質、反応、合成に関する演習課題について自学習により解答を作成する。

成績評価方法:(1) 出席と受講態度および(2) 提出された演習課題レポートを総合的に評価する。

教 科 書:教科書の指定はありません。講義担当者の配布資料を用いる。

オフィスアワー: 田口 武夫 いつでも可。但し、要事前連絡。 教授室所 属教室: 田口 武夫 有機合成化学教室 研究2号館3階304

特記事項:【時間割】

回数	月日(曜日)	時 限	担 当
1, 2	5月17日 (火)	2、3	平尾
3、4	5月24日 (火)	2、3	竹安
5, 6	5月25日 (水)	4、5	山田
7、8	6月 7日 (火)	2、3	林 (良)
9, 10	6月16日 (木)	4、5	松本(隆)
11-15	特定せず		課題演習(自習)

- ●選択科目Ⅱは前期に3単位以上を履修する。
- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

 \blacksquare

臨床薬理学特論 Advanced Topics in Clinical Pharmacology

年 第6学年 科目分類 択 前期・後期 前 期 位 1 選 山田

授

教

平野 教 授 俊彦

高柳 理早 准教授

学習目標 (GIO)

医薬品の適正使用の推進や新しい医薬品の開発に携わる薬剤師になるために、ヒトを対象とした 薬力学および薬物動態学を基盤とする臨床薬理学的な知識と応用力を修得する。

安彦

▋講師紹介

平野 俊彦 本学臨床薬理学教室

Ш⊞ 安彦 本学臨床薬効解析学教室 高柳 理早 本学臨床薬効解析学教室

▋行動目標 (SBOs)

1	臨床薬理学の概念について説明できる。
2	時間薬理学と臨床薬理学におけるその意義について概説できる。
3	がん化学療法の個別化の重要性と問題点について述べることができる。
4	我が国の製薬会社の医薬品開発における臨床薬理学の役割について説明できる。
5	薬剤評価学の重要性を説明できる。
6	医薬品の効果・副作用を薬物動態学および薬力学から理論的に評価するための基本的知識を修得する。
7	メタアナリシスの概念を理解し、結果を評価できる。
8	臨床適用上の効果指標(オッズ比、必要治療数、相対危険度など)について説明できる。
9	薬剤疫学の重要性を説明できる。
10	疫学データを解釈する上での注意点を列挙できる。

授業内容

回数	担当	内 容	対応 (SBOs)
1, 2	平野俊彦	臨床薬理学の概念、時間薬理学とその臨床応用	1, 2
3、4	平野俊彦	がん化学療法の個別化の重要性と問題点	3
5-8	平野俊彦、製薬会社の 臨床開発関係者(大手 2社からの外来講師を 予定)	我が国の製薬会社の医薬品開発における臨床薬理学の役割 およびバイオマーカーについて	4
9、10	山田安彦	医薬品の効果・副作用の評価(1)薬剤評価学 1	5, 6
11, 12	山田安彦、高柳理早	医薬品の効果・副作用の評価(2)薬剤評価学2	7、8
13、14	山田安彦、外来講師	医薬品の効果・副作用の評価(3)薬剤疫学	9、10

授業で行っている工夫: 学内講師の講義に加え、臨床の最先端で活躍している外来講師の生の声も交えて、臨場感を盛り 込んだ講義にしていきます。

モデル・コアカリ:C - 11 (2)、 C - 13 (1)、(5)、 C - 14 (1)、(3)、(4)、 C - 15 (1)、 C - 17 (1) - (5) キュラムとの関連

成績評価方法: 出席回数とレポート

書:講義ごとに、随時プリント等の資料を配布

 ∇

XI 実習科目

参考書:臨床薬理学、日本臨床薬理学会中野重行ら編(第2版)、株式会社医学書院、2003年 適正使用のためのくすりの見方と考え方、山田安彦著、株式会社じほう、2007年 標準医療薬学 医薬情報評価学、山田安彦編、株式会社医学書院、2009年

オフィスアワー: 平野 俊彦 在室時は随時可 医療薬学研究教育棟2F教授室

山田 安彦 在室時は随時可 研究2号館2F204臨床薬効解析学教室教授室

高柳 理早 在室時は随時可 研究2号館2F204臨床薬効解析学教室

所属教室:平野俊彦臨床薬理学教室

山田 安彦 臨床薬効解析学教室

高柳 理早 臨床薬効解析学教室

特 記 事 項:大手製薬会社や他大学から招へいした外来講師による現場の話も交え、臨場感を持った講義にしていきます。

教員からの一言: 臨床薬理学は、ヒトを対象とした薬力学および薬物動態学を基盤とし、個別医療、医薬品の適正 使用の推進、あるいは新しい医薬品の開発を目指す学問領域です。受講者には、臨床薬剤師ある いは医薬品開発に携わる薬剤師としてこれまで得た基礎学力を臨床へと展開するための、知識と 応用力を身につけてもらいたいと思います。

- ●選択科目 Ⅱは前期に3単位以上を履修する。
- ●履修にあたっては、4月上旬に委員会がガイダンスを実施し、科目の趣旨について概説する。 さらに、各科目のスケジュールならびに選択方法について説明し、学生はそれに基づき、選択 科目を申請する。申請結果は、受講人数のバランス等を勘案し、1週間以内に発表する。
- ●選択科目Ⅱの最終的な単位認定は、前期終了時に行う。委員会は前期期間中を通じて継続的に 履修科目数調査ならびに補講、特別措置の調整などを行い、評価時に履修単位不足が生じない ように指導する。

XI 実習科日

後期選択専門科目Ⅱ

学	年	第6学年	科目分類	選	択		前期・後期	後	期			単 位	2	
教	授	大野 尚仁		准教	授	杉浦	宗敏			准教	效授	小倉	健一郎	
講	師	柴崎 浩美		講	師	黒田	明平			助	教	恩田	健二	
助	教	石橋 健一		助	教	沓掛	真彦							

学習目標 (GIO)

後期選択科目 II は、以下の6科目から構成されており、各学科の学生は各々2科目必修である:臨床薬物動態学特論(A)、病理解剖学特論(A)、定量的構造活性相関(B)、リード化合物の創製と最適化(B)、感染制御学(C)、ゲノム情報特論(C).各学科の教員が中心となり、医療の担い手となるための学習の総まとめの一環として、これまで6年間で学んだ内容を縦断的ならびに横断的に活用する能力を醸成する.

行動目標 (SBOs)

下記の基礎、臨床、化学、生物系の領域・分野について、演習を通じて縦断的ならびに横断的に 知識を活用する能力を身につける

1	臨床薬物動態学
2	病理解剖学
3	定量的構造活性相関
4	リード化合物の創製と最適化
5	感染制御学
6	ゲノム情報

授業内容

回数	担 当	内 容	対応 (SBOs)
1	大野	(年度初めに実施) ガイダンスならびに事前準備についての解 説	
2	大野	学習目標における知識の階層性について.知識の階層性を測る 方法について.演習問題の作成法について	
3-5, 6-8, 9-11	柴崎、恩田、黒田、 小倉、石橋、沓掛	演習問題を実践する	SBOs1~6に対応
12-14	柴崎、恩田、黒田、 小倉、石橋、沓掛	演習問題の作成演習	SBOs1~6に対応
15-17	柴崎、恩田、黒田、 小倉、石橋、沓掛、 杉浦、大野	演習と解説	SBOs1~6に対応

モデル・コアカリ: モデル・コアカリの全範囲について、縦横無尽に活用できることを目指す.

キュラムとの関連

オフィスアワー: 大野尚仁 いつでも可 免疫学教室 事前に予約すること

教員からの一言:6年間の総まとめの時期となっている.自己研鑽型生涯学習能力を十分に発揮して、有意義な演習

にしてほしいと願っている.

実習科目

■共通実習科目	
[生物系実習 I]	
基礎生物学実習 · · · · · · · · 351	ı
[化学系実習 I]	
基礎有機化学実習352	2
[物理系実習 I]	
分析化学実習354	ŀ
[化学系実習Ⅱ]	
有機化学実習356	;
漢方薬物学実習358	3
[物理系実習Ⅱ]	
物理化学・分析化学実習 360)
[生物系実習Ⅱ]	
微生物・免疫学実習362	2
[化学系実習Ⅲ]	
天然医薬品化学実習364	ŀ
医薬品合成実習366	;
[生物系実習Ⅲ]	
生化学実習 368	,
[医療系実習 I]	
病態生理学・薬物安全性学実習 370)
[創薬実習]	
薬剤学実習)
■科別実習	
[医療系実習Ⅱ]	
薬理学実習	ļ
[健康・環境実習]	
衛生化学・公衆衛生学実習 376	;
[化学系実習IV]	
化学系実習Ⅳ · · · · · · · 378	3
[生物系実習IV]	
生物系実習Ⅳ · · · · · · · · 378	3
[事前実務実習]	
事前実務実習379	
[実務実習]384	
[課題研究]387	7

一覧 実 科 習 目

実習科目		実習名	年 次	ページ			
	生物系実習Ⅰ	基礎生物学実習	1年・後期	351			
	化学系実習I	基礎有機化学実習	1年・後期	352			
	物理系実習Ⅰ	分析化学実習	2年・前期	354			
		有機化学実習	2年・前期	356			
共	化学系実習Ⅱ	漢方薬物学実習	24、即知	358			
通実	物理系実習Ⅱ	物理化学・分析化学実習	理化学・分析化学実習 2年・後期				
習科	生物系実習Ⅱ	微生物・免疫学実習	2年・後期	362			
目	化学系実習皿	天然医薬品化学実習	3年・前期	364			
11. 子 术 关 首 皿		医薬品合成実習	3十・削粉	366			
	生物系実習Ⅲ	生化学実習	3年・前期	368			
	医療系実習Ⅰ	病態生理学・薬物安全性学実習	3年・後期	370			
	創 薬 実 習	薬剤学実習	3年・後期	372			
	医療系実習Ⅱ	薬理学実習	4年・前期	374			
	健康・環境実習	衛生化学・公衆衛生学実習	4年・前期	376			
科	化学系実習Ⅳ	化学系実習Ⅳ	4年・後期	378			
別実	生物系実習Ⅳ	生物系実習Ⅳ	4年・後期	378			
習	事前実務実習	事前実務実習	4年・前期・後期	379			
	実 務 実 習	病院・薬局実習	5年	384			
	課題研究	卒業論文	5・6年	387			

基礎生物学実習 Introductory Course in Biological Science

学年第1学年	前期・後期	後 期	単位	1.5
■担当教室	■担当者			
病態生化学教室	野水 基義	吉川 大和 保住	建太郎 片桐	文彦
機能形態学教室	馬場 広子	山口 宜秀 林	明子 石橋	智子
RI共同実験室	堀江 正信			

■実習担当

薬学基礎実習教育センター

学習目標 (GIO)

ヒトのからだでは、細胞が互いに影響し合いながら統制の取れた機能を発揮する器官を形成し、 さらに個体としての正常な生命活動を維持している。本実習においては、実験動物を用いて細胞、 器官を観察することにより、個体構築に関する基礎的な知識を習得する。さらにヒトの各器官系 の構造と機能調節および生体のダイナミックな調節機構に関する基本的知識・技能・態度を習得 する。

┃ 行動目標 (SBOs)

1	生命の尊厳を理解して、実験動物を取扱うとともに、ヒトの標本に対して真摯な態度で接することができる。
2	染色体標本を観察し、細胞分裂と遺伝情報の伝達について説明できる。
3	組織標本を顕微鏡で観察し、その形態的特徴を説明できる。
4	実験動物を適正に取り扱うことができる。
5	実験動物での代表的な薬物投与法を実施できる。
6	実験動物を解剖し、臓器の配置および形態を説明できる。
7	人体を構成する臓器の形態および体内での位置を示すことができる。
8	血圧や心電図を測定し、それらの生理学的な発生原理を説明できる。

授業内容

回数	内 容	対応 (SBOs)			
1	基礎生物学概説、染色体標本の作製	1, 2			
2	染色体標本の観察、動物組織標本の観察	1, 2, 3			
3	実験動物概論、外部形態の観察、骨格の観察、保定・投与法	1、4、5			
4	4 麻酔、採血、系統解剖(1)				
5	系統解剖(2)	1, 6			
6	6 人体解剖概説				
7	7 人体の主要な臓器の肉眼的および顕微鏡的観察				
8	血圧と心電図の測定	8			
9	実習試験				

成績評価方法:出席、レポート、態度、実習試験の結果から総合的に評価する。

オフィスアワー: 本実習担当教員 いつでも可(原則として実習終了後)

所 属 教 室:野水 基義、吉川 大和、保住建太郎、片桐 文彦 病態生化学教室 研究2号館508号室

馬場 広子、山口 宜秀、林 明子、石橋 智子 機能形態学教室 研究 1 号館 202 号室

堀江 正信 RI共同実験室 研究2号館1階

基礎有機化学実習	Introductory Course in Organic Chemistry
----------	--

学 年 第1学	年 前期·後	期 後期	単 位	1.5
■担当教室	■担当者			
有機合成化学教室	田口武	夫 松本 隆司 矢内	光	
薬品化学教室	林 良	雄 薬師寺文華 山崎	有理	
生物分子有機化学教室	宮岡宏	明 釜池 和大 太田	浩一朗	
■実習担当				
薬学基礎実習教育セン	ター 土橋 保	夫		

学習目標 (GIO)

有機化学の学習に必要な基礎的実験を行い、有機化合物の取扱い方法、分離法、精製法、物性値の測定法、構造確認法などについて、原理を理解して基本的な技能を習得する。また、脱離反応と置換反応及び簡単な医薬品合成の実験を行い、有機反応の基本操作手順を学ぶ。

│ 行動目標 (SBOs)

-	
1	官能基の性質を利用した分離精製を実施できる。
2	代表的な官能基の定性試験を実施できる。
3	代表的な官能基を他の官能基に変換できる。
4	課題として与えられた医薬品を合成できる。
5	反応廃液を適切に処理する。
6	基本的な化合物を命名し、ルイス構造式で書くことができる。
7	薬学領域で用いられる代表的化合物を慣用名で記述できる。
8	有機反応における結合の開裂と生成の様式について説明できる。
9	有機反応を、電子の動きを示す矢印を用いて説明できる。
10	ルイス酸・塩基を定義することができる。
11	有機化合物の性質に及ぼす共鳴の影響について説明できる。
12	代表的な芳香族化合物を列挙し、その物性と反応性を説明できる。
13	芳香族化合物の求電子置換反応の機構を説明できる。
14	反応の進行を、エネルギー図を用いて説明できる。
15	芳香族化合物の求電子置換反応の反応性および配向性に及ぼす置換基の効果を説明できる。
16	ハロゲン化アルキルの脱ハロゲン化水素の機構を図示し、反応の位置選択性(Zaitsev則)を説明できる。
17	アルケンへの臭素の付加反応の機構を図示し、反応の立体特異性(アンチ付加)を説明できる。
18	カルボン酸誘導体(酸無水物)の代表的な性質と反応を列挙し、説明できる。
19	水素結合について例を挙げて説明できる。
20	クロマトグラフィーの種類を列挙し、それぞれの特徴と分離機構を説明できる。
21	薄層クロマトグラフィーを用いて代表的な化学物質を分離分析できる。

XI

▋授業内容

回数	内 容	対応 (SBOs)
1	蒸留による有機化合物の精製: インドフェノールブルーを不純物として含むメタノー ルの常圧蒸留	5-7, 19
2	有機化合物の混合物の抽出分離:分液ロートを用いた酸性物質、塩基性物質、中性物質の抽出分離	1, 3, 5 – 7, 10
3	溶媒の減圧濃縮と再結晶による有機化合物の精製:ロータリーエバポレーターを用いたエーテルの減圧下での濃職、酸性有機化合物の再結晶(熱時ろ過法)による精製	1,5
4	官能基の定性反応による構造推定、物性値の測定:塩化第二鉄反応によるフェノール性水酸基の検出、ジアゾカップリング反応による芳香族第一級アミンの検出、微量融点測定装置を用いた融点測定	2, 5, 6-10
5	薄層クロマトグラフィーによる有機化合物の分離分析:有機色素混合物及びフタル酸 ジエステル類の分離	1、5-7、 19-21
6	脱離反応:メソー 1,2 ージブロモー 1,2 ージフェニルエタンと水酸化カリウムの反応 によるジフェニルアセチレンの合成	2、3、5 — 10、 16、17
7	芳香族求電子置換反応:安息香酸メチルの二トロ化反応	3, 5 – 15
8	アスピリンの合成:サリチル酸のアセチル化反応	3-10, 18
9	総合演習(試験)	

授業で行っている工夫: 毎回の実習終了時に、当日の実験を記録したノートを教員がチェックして実験結果を評価しながら口頭試問を行う。この内容を踏まえて、結果の考察に重点を置いたレポートの提出を求める。

さらに、実験の原理、操作に関連した課題を与え、理論に基づいた基本的技能の修得を目標とする。

モデル・コアカリ: C-2 化学物質の分析 (2) 化学物質の検出と定量 【クロマトグラフィー】

キュラムとの関連 C-4 化学物質の性質と反応

(1) 化学物質の基本的性質 (2) 有機化合物の骨格 (3) 官能基

成績評価方法: 1) 形成的評価 a) 知識:キーワードを提示して課題と演習問題によりチェックする。

- b) 技能およびc) 態度:基礎的な化学実験の技能の習得と実験態度については、 実験中にチェックしてフィードバックする。さらに毎回の実験終了報告の際 に、実験結果の評価を行いながら、技能と態度についても助言する。
- 2) 総括的評価 a) 知識:総合演習(試験)、出席、提出レポートを総合的に評価する。
 - b) 技能および c) 態度:形成的評価により判断する。

総合演習(試験)で不合格の者に対しては、再試験を1回実施する。なお、実習はすべてに出席すること。やむを得ず病気で欠席の場合は、予め教員に連絡して指示に従うこと。

教 書:基礎有機化学実習実験書(2011年度版)

参考書:マクマリー有機化学(上)(中) 第7版 伊東ら訳 東京化学同人

フィーザー/ウィリアムソン 有機化学実験 原書8版 磯部ら訳 丸善

新版 基礎有機化学実験 その操作と心得 畑ら著 丸善

オフィスアワー: 土橋 保夫 いつでも可、要予約。 教育 1 号館 2 階 1 2 0 5

分析化学実習	Practical Training in Analytical Chemistry
	Tractical Training in Analytical Chemistry

学 年	第2学年	前期	・後期	前期		単位		1.5			
■担当教室		■担	当者								
分析化学教室		楠	文代	袴田	B :	秀樹	小谷	明	高橋	浩司	
薬物生体分析等	学教室	渋澤	庸一	田代	ť	櫻子	柳田	顕郎			
■実習担当											
薬学基礎実習教	 数育センター	湯浅	洋子								

学習目標 (GIO)

容量分析に主眼を置き、薬学を学ぶ上で必要となる分析化学の基本的な技能を身につける。先ず、試料中に存在する物質の種類および濃度を知るために、酸・塩基や酸化還元などの各種の化学平衡に基づいた定量法の基本的知識と技能を修得する。加えて、機器分析法の基本的知識と技能を身につけ、医薬品を含む化学物質をその性質に基づいて分析できるようにする。同時にバリデーションの考え方を身につけ、得られた分析データの評価方法を修得する。

┃ 行動目標 (SBOs)

_	
1	原子量、分子量を説明できる。
2	溶液の濃度計算と調製ができる。
3	質量保存の法則について説明できる。
4	代表的な化学変化を化学量論的にとらえ、その量的関係を計算できる。
5	酸と塩基の基本的な性質および強弱の指標を説明できる。
6	酸化と還元について、電子の授受を含めて説明できる。
7	標準電極電位について説明できる。
8	Nernstの式を説明できる。
9	酸・塩基平衡を説明できる。
10	溶液の水素イオン濃度(pH)を計算・測定できる。
11	緩衝作用について具体例を挙げて説明できる。
12	代表的な緩衝液の特徴とその調製法を説明できる。
13	化学物質のpHによる分子形、イオン形の変化を説明できる。
14	酸化還元平衡について説明できる。
15	実験値を用いた計算および統計処理ができる。
16	医薬品分析法のバリデーションについて説明できる。
17	日本薬局方収載の容量分析法について列挙できる。
18	中和滴定の原理、操作法および応用例を説明できる。
19	酸化還元滴定の原理、操作法および応用例を説明できる。
20	日本薬局方収載の代表的な医薬品の容量分析を実施できる。
21	日本薬局方収載の計量器を正しく使用できる。
22	日本薬局方収載の容量分析用標準液の調製と標定ができる。
23	ファクターを説明できる。
24	
25	
26	クロマトグラフィーの種類を列挙し、それぞれの特徴と分離機構を説明できる。
27	クロマトグラフィーで用いられる代表的な検出法と装置を説明できる。
28	液体クロマトグラフィーなどのクロマトグラフィーを用いて代表的な化学物質を分離分析できる。
29	紫外可視吸光分析の原理を説明し、代表的な化学物質の定量ができる。

授業内容

回数	内 容	対応 (SBOs)
1	容量分析用標準液の調製と標定、0.1mol/Lの水酸化ナトリウム液のファクターの算出	1, 2, 3, 4, 5, 9, 13, 15, 17, 18, 21, 22, 23, 24
2	目視指示薬を用いた酸塩基滴定、リン酸の定量	1、2、3、4、5、9、11、12、13、 15、17、18、21、23、24
3	電位差滴定法による多塩基酸の滴定曲線の作成、電位差計の装 置の理解、リン酸の定量	1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18, 21, 23, 24
4	酸化還元滴定、0.1mol/Lチオ硫酸ナトリウム液の調製と標定、 0.05mol/Lヨウ素液の調製と標定	1、2、3、4、6、14、15、17、 19、21、22、23、24
5	日本薬局方収載医薬品の容量分析、アスコルビン酸の定量	1、2、3、4、6、14、15、17、 19、20、21、23、24
6	分析法バリデーション、日本薬局方収載計量器を用いるときの 測定精度の評価	15、16、21、24
7	紫外可視吸光光度法、吸光光度計の装置の理解、吸収スペクトルの解析、モル吸光係数の算出と食品着色料の定量	1, 2, 3, 4, 15, 21, 24, 29
8	高速液体クロマトグラフィー(HPLC)による日本薬局方収載 医薬品の定量、HPLC装置の理解、システム適合性試験、内標 準法によるインドメタシンカプセル中のインドメタシンの定量	1、2、3、4、13、15、16、 21、24、25、26、27、28
9	容量分析、機器分析、実験データの取り扱いについて、試験	1、2、3、4、15、16、17、 21、23、24

授業で行っている工夫: 各学生が分析化学に必要な基本的知識や技術をより良く修得できるようにするために、容量分析に必要な溶液濃度の計算や試料調製、滴定操作、得られた実験値からのファクターや目的成分含量の計算、分析法バリデーションに基づいた分析結果の客観的評価を各個人で行う。実験結果は口頭もしくはインターネットを介して報告し、結果に対する評価および実験結果に影響を与える要因について職員からのフィードバックを受ける。

また、これらの結果と各実習項目に関連し出題された課題について調査、考察を行いレポートにまとめ、提出する。提出されたレポートは職員により評価され、内容に関してフィードバックを受ける。さらに未知検体を用い、その中に含まれる目的成分の定量を行い、定量結果を報告する。報告された定量結果は職員により評価され、評価結果は学生へフィードバックされる。その評価結果から定量結果に影響を与えた要因などを考察し、実習で得られた知識・技術の修得達成度を学生自らも評価する。また、未知検体を取り扱うことにより、実試料を扱うときの注意点や責任に関しても学ぶ。

モデル・コアカリ: C2 化学物質の分析(1)化学平衡、(2)化学物質の検出と定量 キュラムとの関連 C3 生体分子の姿・かたちをとらえる (1)生体分子を解析する方法

成績評価方法:1)形成的評価 a)知識:各項目ごとにレポートと課題の提出を行う。

- b) 技能: 実習中の手技について、実習時間内にフィードバックする。
- c) 態度:実習に取り込む姿勢について観察記録をつけ、実習時間内にフィードバックする。
- 2) 総括的評価 a) 知識:実習態度、試験、レポートを総合的に評価する。
 - b)技能:繰り返しの形成的評価で改善が認められれば合とする。
 - c)態度:繰り返しの形成的評価で改善が認められれば合とする。

教 科 書:物理系実習 [テキスト

薬学生のための分析化学(廣川書店)

演習を中心とした薬学生の分析化学(廣川書店)

参 考 書:第十五改正日本薬局方解説書(廣川書店) イラストで見る化学実験の基礎知識(丸善)

オフィスアワー: 湯浅 洋子 いつでも可。 教育2号館2階2209

田代 櫻子、柳田 顕郎 いつでも可。 研究2号館405号

袴田 秀樹 いつでも可。 研究2号館406号

所 属 教 室:湯浅 洋子 薬学基礎実習教育センター

田代 櫻子、柳田 顕郎 薬物生体分析学教室

袴田 秀樹 分析化学教室

有機化学実習 Practical Training in Organic Chemistry

学 年	第2学年	前期	・後期	前	期			単	位	1.5	(漢方薬物学実習と併) せて単位認定する
■担当教室		■担当	当者								
機能性分子設	計学教室	青柳	榮	古石	Б	裕治	佐蔣	弘人			
薬品化学教室		林	良雄	薬	師寺	文華	山崎	有理			
■実習担当											
薬学基礎実習	教育センター	土橋	保夫								

学習目標 (GIO)

有機化学反応の実験を通して一連の実験技術を確実に習得し、さらに実験化学の重要性を認識しながら科学的な視点から実験を観察してその結果を充分に考察する。種々の官能基を有する有機化合物の多様な性質と反応性を効率的に理解して応用力を養う。

│ 行動目標 (SBOs)

1	官能基の性質を利用した分離精製を実施できる。
2	代表的な官能基の定性試験を実施できる。
3	代表的な官能基を他の官能基に変換できる。
4	反応廃液を適切に処理する。
5	基本的な化合物を命名し、ルイス構造式で書くことができる。
6	薬学領域で用いられる代表的化合物を慣用名で記述できる。
7	基本的な有機反応(置換、付加、脱離、転位)の特徴を概説できる。
8	有機反応における結合の開裂と生成の様式について説明できる。
9	有機反応を、電子の動きを示す矢印を用いて説明できる。
10	ルイス酸・塩基を定義することができる。
11	有機化合物の性質に及ぼす共鳴の影響について説明できる。
12	反応の進行を、エネルギー図を用いて説明できる。
13	水素結合について例を挙げて説明できる。
14	アルデヒド類およびケトン類の性質と、代表的な求核付加反応を列挙し、説明できる。
15	カルボン酸誘導体(酸ハロゲン化物、酸無水物、エステル、アミド、ニトリル)の代表的な性質と反応を列挙し、 説明できる。
16	アルコール類の代表的な性質と反応を列挙し、説明できる。
17	アルケンの酸化的開裂反応を列挙し、構造解析への応用について説明できる。
18	アミン類の代表的な性質と反応を列挙し、説明できる。

Х

授業内容

回数	内 容	対応 (SBOs)
1	還元反応:アセトフェノンと水素化ホウ素ナトリウムの反応	1-13, 14, 16
2	エステル化反応:1-フェニルエタノールとp-トルオイルクロリドの反応	1-12, 15, 16
3	アルドール縮合:アセトンとベンズアルデヒドの反応による 1,5-ジフェニルペンタ -1,4-ジエン-3-オンの合成	4、13
4	二重結合の酸化的開裂と分子内アルドール縮合:シクロヘキサン-1,2-ジオールとメタ過ヨウ素酸ナトリウムの反応、ヘキサンジアールと水酸化カリウムの反応によるcyclopent-1-ene-1-carbaldehydeの合成	1~12、14、17
5	カルボニル化合物とアミンの反応:シクロヘキサノンとセミカルバジドの反応による セミカルバゾンの合成	1~12、14、18
6	総合演習(試験)	

授業で行っている工夫: 2人1組で実験を行うが、全員の実験結果を掲示により発表して比較することにより、実験技術等の問題点を自ら考察して技能のレベルアップを図る。毎回の実習終了時に、当日の実験を記録したノートを教員がチェックして実験結果を評価しながら口頭試問を行う。この内容を踏まえて、結果の考察に重点を置いたレポートの提出を求める。

モデル・コアカリ: C-2 化学物質の分析 (2) 化学物質の検出と定量 【クロマトグラフィー】

キュラムとの関連 C-4 化学物質の性質と反応

(1) 化学物質の基本的性質 (2) 有機化合物の骨格 (3) 官能基

成績評価方法:1) 形成的評価 a) 知識:キーワードを提示して課題と演習問題によりチェックする。

- b) 技能および c) 態度:基礎的な化学実験の技能の習得と実験態度については、 実験中にチェックしてフィードバックする。さらに毎回の実験終了報告の際 に、実験結果の評価を行いながら、技能と態度についても助言する。
- 2) 総括的評価 a) 知識:総合演習(試験)、出席、提出レポートを総合的に評価する。
 - b) 技能および c) 態度:形成的評価により判断する。

総合演習(試験)で不合格の者に対しては、再試験を1回実施する。なお、実習はすべてに出席すること。やむを得ず病気で欠席の場合は、予め教員に連絡して指示に従うこと。

教 科 書:化学系実習Ⅱ実験書(2011年度版)

参 考 書:マクマリー有機化学(上)(中) 第7版 伊東ら訳 東京化学同人 フィーザー/ウィリアムソン 有機化学実験 原書8版 磯部ら訳 丸善 新版 基礎有機化学実験 その操作と心得 畑ら著 丸善

オフィスアワー: 土橋 保夫 いつでも可、要予約。 教育 1 号館 2 階 1 2 0 5

漢方薬物学実習 Practical Training of Kampo Medicine

学 年	第2学年	前期	・後期	前	期		単	位		有機化学実習と併 せて単位認定する
■担当教室		■担当	当者							
漢方資源応用学教室		三巻	祥浩	黒田	明平	横須	賀章人	松尾	侑希子	
■実習担当										
薬学基礎実習教	 教育センター	伊奈	郊二							

学習目標 (GIO)

漢方の基礎概念、漢方処方で用いられる生薬、重要な漢方処方を学習した後、実際に医療で用いられている漢方製剤や生薬製剤について、調剤、配合生薬、品質に関する実習、実験を行うことにより、漢方製剤や生薬製剤の特徴を理解し、調剤、調製、品質管理法を体得する。

行動目標 (SBOs)

1 漢方の基礎概念を概説できる。 2 漢方処方で用いられる生薬を概説できる。 3 漢方製剤や生薬製剤の特徴を概説できる。 4 漢方煎じ薬を調剤し、湯剤を調製できる。 5 漢方煎じ薬とエキス剤の味、におい、服用のしやすさの差について説明できる。
3 漢方製剤や生薬製剤の特徴を概説できる。 4 漢方煎じ薬を調剤し、湯剤を調製できる。
4 漢方煎じ薬を調剤し、湯剤を調製できる。
. Nosmoreanio minerale
芝方煎じ薬とエキス剤の味、におい、服用のしやすさの差について説明できる。
6 官能的な試験により漢方生薬を区別、同定できる。
7 化学的な試験により漢方生薬を区別、同定できる。
8 肉眼による形態学的な観察により漢方生薬を区別、同定できる。
9 顕微鏡による形態学的な観察により漢方生薬を区別、同定できる。
10 漢方湯剤、散剤、丸剤の特徴について概説できる。
11 指標成分に着目した漢方製剤の品質試験を実施できる。
12 指標成分に着目した生薬製剤の品質試験を実施できる。
13 日本薬局方の代表的な生薬製剤について概説できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	漢方資源応用学	漢方の基礎概念、漢方処方で用いられる生薬、重要な漢方処 方を解説した後、演習を行い、漢方に関する基礎知識を習得 する。	1、2、3
2	漢方資源応用学	かぜ症候群に頻用されている8種の漢方湯剤を調剤し、湯剤を調製して、色、におい、味を確認する。その結果を医療用漢方エキス剤と比較し、漢方エキス剤の簡便さ、服用のしやすさを体感して、エキス剤の有用性を理解する。	4、5、6
3	漢方資源応用学	医療用漢方製剤として頻用されている2種の漢方処方「安中散」と「桂枝茯苓丸」について、配合されている生薬の性状(色、におい、味、形態的特徴)を確認し、また、数種の生薬については化学的な確認試験を行い、その結果が日局の規格と一致しているか考察する。	6、7、8、9

回数	担当	内 容	対応 (SBOs)
4	漢方資源応用学	数社から製造、販売されている医療用およびOTC漢方製剤「安中散」について、薬効に寄与していると考えられる精油成分「ケイヒアルデヒド」と「アネトール」を指標とした漢方製剤の成分分析を行い、製剤の品質について考察する。	7、11、12
5	漢方資源応用学	日局収載の苦味健胃生薬製剤「センブリ重曹散」と「ゲンチアナ重曹散」について、各配合成分に関する試験を行い、その結果が日局の規格と一致しているか否か考察する。	7、12、13
6	漢方資源応用学	1回目から5回目までのまとめと試験	1, 2, 3

授業で行っている工夫: 基礎実習科目であるが、漢方エキス製剤のにおいや味を湯剤と比較するなど、実務に即した実習 も行っている。

実習操作終了後に毎回口頭試問を実施し、形成的評価を行っている。

あらかじめフォーマットされたレポート用紙(A3、1枚)を学生に配布し、実習目的、実習内容、 実習操作、結果、考察などの記入漏れがないようにしている。

モデル・コアカリ: C-7 自然が生み出す薬物

キュラムとの関連 (1) 薬になる動植鉱物

【生薬の同定と品質評価】

- 2) 代表的な生薬を鑑別できる。(技能)
- 3) 代表的な生薬の確認試験を実施できる。(技能)
- 5) 生薬の同定と品質評価法について概説できる。
- (3) 現代医療の中の生薬・漢方薬

【漢方医学の基礎】

- 6) 漢方処方に配合されている代表的な生薬を例示し、その有効成分を説明できる。
- 7) 漢方エキス製剤の特徴を煎液と比較して列挙できる。

成績評価方法:1) 形成的評価 a) 知識:毎回の実習終了時に口頭試問を行う。

- b) 技能:実習時間中に、正しい手技について繰り返しフィードバックを行う。
- c) 態度: 実習期間中を通じて観察記録をつけ、毎回の終了時にフィードバック を行う。
- 2)総括的評価 a)知識:実習試験、提出物(レポート、課題)を総合的に評価する。
 - b) 技能:未知検体の確認試験(配合剤の同定)を実施する。
 - c) 態度:繰り返しの形成的評価で改善が認められれば合格とする。
- 書: 化学系実習 Ⅱ 実験書 (薬学基礎実習教育センター編) 教 科
- 老 書:日本薬局方解説書(廣川書店)

薬学生のための漢方薬入門第2版改定版(指田、三巻著、廣川書店)

パートナー生薬学(指田、山崎、竹谷編、南江堂)

オフィスアワー: 黒田 明平 いつでも可、要予約 漢方資源応用学教室 研究2号館408室

所属教室:黒田明平漢方資源応用学教室研究2号館408室

項: 本実習では、2日目、3日目に漢方処方および生薬の味を試験するので、ミネラルウォーターを 用意すること。(ジュース、お茶など味のあるものは不可)

教員からの一言: 実習試験では、実習内容はもちろんのこと、関連する知識 [各漢方処方が適用となる症候と疾患、 配合生薬の基礎知識(基原植物の科名、和名、使用部位、主要成分とその構造)など]も出題し ている。しっかりと予習をして積極的に実習にのぞみ、十分な復習をして実習試験を受けること。 なお、本学において、漢方を取り扱う実習はこれが唯一である。

物理化学・分析化学実習

Practical Training in Analytical Chemistry and Physical Chemistry

学 年	第2学年	前期	・後期	後	期		単	位	1.5	
■担当教室		■担	当者							
分子機能解析等	学教室	横松	カ	青山	山洋	史 春木	晶充			
薬物生体分析学教室		渋澤	庸一	田伯	七櫻	子 柳田	顕郎			
■実習担当										
薬学基礎実習	数育センター	湯浅	洋子							

学習目標

単位、有効数値の取扱い、濃度計算、機器分析法などに関する分析化学演習を通して、薬学分野における数量的な取り扱いの基本を修得する。日本薬局方一般試験法の物理的試験法に収載の機器分析の基本的な原理、測定法を理解する。さらに、薬学に関連する題材をとりあげた物理化学実習を通して、物質の化学変化や変化の過程、反応速度、エネルギー変化などの物理化学的諸現象の理解を深める。

┃ 行動目標 (SBOs)

1	溶液の調製と濃度計算ができる。
2	溶液の水素イオン濃度(pH)を計算できる。
3	酸と塩基平衡を説明できる。
4	溶液のpHを測定できる。
5	緩衝作用について具体例を挙げて説明できる。
6	代表的な緩衝液の特徴とその調製法を説明できる。
7	紫外可視吸光度測定法、蛍光光度法の原理を説明し、化学物質への適用について説明できる。
8	クロマトグラフィーの種類を列挙し、それぞれの特徴と分離機構を説明できる。
9	クロマトグラフィーで用いられる代表的な検出法と装置を説明できる。
10	電気泳動法の原理と応用を説明できる。
11	反応次数と速度定数について説明できる。
12	微分型速度式を積分型速度式に変換できる。
13	代表的な(擬)一次反応の反応速度を測定し、速度定数を求めることができる。
14	旋光度測定法の概略を説明できる。
15	実測値を用いて比旋光度を計算できる。
16	旋光度と絶対配置の関係について説明できる。
17	相平衡と相律について説明できる。
18	代表的な状態図(一成分、二成分、三成分系相図)について説明できる。
19	物質の溶解平衡について説明できる。
20	溶解度の温度依存性(van't Hoffの式)について説明できる。
21	代表的な物理変化、化学変化に伴う標準エンタルピー変化を説明し、計算できる。
22	界面における平衡について説明できる。
23	吸着平衡について説明できる。
24	自由エネルギーについて説明できる。
25	流動現象および粘度について説明できる。
26	高分子溶液の性質について説明できる。
27	高分子の分子量を算出できる。

▋授業内容

回数	担 当	内 容	対応 (SBOs)
1	薬物生体分析学	分析化学計算演習(単位・有効数字の取扱い、濃度計算、pH 算出について)	1, 2, 3
2	//	pH 緩衝液の基本的性質の理解、リン酸緩衝液の調製と緩衝能について	4、5、6
3	//	紫外可視吸光度測定法、蛍光光度法、旋光度測定法、クロマトグラフィー、電気泳動に関する演習	7、8、9、 10、14
4	分子機能解析学	物理化学実習の内容、原理、目的、基本事項の説明、粘度測 定のデモと演習	25、26、27
5	//	ショ糖の加水分解反応速度(経時変化を旋光度により測定し、 反応速度定数を算出する)	11、12、13、 14、15、16
6	//	水-フェノール相互溶解度曲線の作成	17、18
7	//	安息香酸の水に対する溶解度の測定(溶解エンタルピーの算出)	19、20、21
8	//	アルコール水溶液類の表面張力の測定(表面過剰濃度の算出)	22、23、24
9	//	実験結果のまとめ、実習試験	

授業で行っている工夫: [物理化学実習]

講義(分子物理化学、物理的平衡論、熱力学・反応速度論)で理解しにくい行動目標について実 験を行い、実験終了後に教員を中心とする小グループで実験結果を討論することにより、行動目 標が明確に理解できるよう工夫している。また、薬の調剤にからめて教授することにより、試料 を「正確にはかる」、「移すこと」の重要性が理解できるように工夫している。

[分析化学実習]

分析化学に必要な基礎的知識に対する理解を深めるため、各実習項目に関連した演習問題を、ま ず各自が考えて解答し、そこで生じた問題点をグループで協議しながら解答へ導く。その解答を まとめたレポートを職員に提出し、その場で評価と内容に関するフィードバックを受ける。また、 緩衝液の基本的性質をより深く理解するために、実験も併行して行う。さらに、機器分析の演習 問題を通して、分析法についての理解を深める。

モデル・コアカリ: [物理化学実習]

キュラムとの関連 C1 物質の物理的性質 (1)物質の構造、(2)物質の状態I、(3)物質の状態I、(4) の変化.

[分析化学実習]

C2 化学物質の分析(1)化学平衡、(2)化学物質の検出と定量

C3 生体分子の姿・かたちをとらえる(1)生体分子を解析する方法

成績評価方法:1)形成的評価 a:知識:各項目ごとにレポートと課題の提出を行う。

b:技能:実習中の手技について、実習時間内にフィードバックする。

c:態度:実習に取り込む姿勢について観察記録をつけ、実習時間内にフィ

ードバックする。

2) 総括的評価 a:知識:実習態度、試験、レポートを総合的に評価する。

b:技能:繰り返しの形成的評価で改善が認められれば合とする。

c:態度:繰り返しの形成的評価で改善が認められれば合とする。実習、演

習態度、課題を総合的に評価する。

教 科 書:物理系実習Ⅱテキスト

薬学領域の物理化学(廣川書店)

薬学生のための分析化学(廣川書店)

演習を中心とした薬学生の分析化学(廣川書店)

書:第十五改正日本薬局方解説書(廣川書店)

オフィスアワー: 横松 力いつでも可。 研究1号館303号室

> 田代 櫻子 いつでも可。 研究2号館405号室 柳田 顕郎 いつでも可。 研究2号館405号室 湯浅 洋子 いつでも可。 教育2号館2209号室

微生物・免疫学実習

Practical Training in Microbiology and Immunology

学 年	第2学年	前期	・後期	後	期		単	位	1.5	
■担当教室		■担	当者							
病原微生物学	数室 数室	笹津	備規	野口	雅久	中南	秀将			
免疫学教室		大野	尚仁	安達	禎之	三浦	典子	石橋	健一	
■実習担当										
薬学基礎実習	数音センター	太多	秀准							

学習目標

(GIO)

薬学の微生物に関する研究は、病原体の研究から医薬品の開発へ進み、さらに感染症の予防・診断に関わる免疫学へと発展してきた。本実習においては、基礎的な細菌、細菌ウイルスの取り扱いからスタートし、抗生物質の効力測定などを習得した後、免疫学に関する凝集反応、抗菌反応、アレルギー反応などについて学ぶ。

┃ 行動目標 (SBOs)

1	主な滅菌法を実施できる。
2	主な消毒薬を適切に使用する。
3	無菌操作を実施できる。
4	代表的な細菌または真菌の分離培養、純培養を実施できる。
5	グラム染色を実施できる。
6	細菌の同定に用いる代表的な試験法(生化学的性状試験、血清型別性状試験、分子生物学的試験)について 説明できる。
7	代表的な細菌を同定できる。
8	赤血球の凝集反応を観察し、抗体の特異性と定量性の機構について説明できる。
9	イムノアッセイ(ELISAやイムノクロマトグラフィー)を用いた抗原の検出・定量法について説明できる。
10	白血球の抗菌作用について観察し、その作用機構について説明できる。
11	アレルギー(PCA)反応について観察し、その発現機構について説明できる。

授業内容

=:			
回数	担 当	内 容	対応 (SBOs)
1	病原微生物学教室	無菌試験(直接法、メンブランフィルター法)、細菌の培養、 バクテリオファージの観察(増殖実験)	1, 2, 3, 4
2	"	細菌の同定、バクテリオファージの宿主特異性試験、手指付 着細菌の検出、空中落下細菌の検出、鼻腔内グラム陽性細菌 の検出	2、3、4
3	"	グラム染色法、細菌の生化学的試験、手指付着細菌の検出、 空中落下細菌の検出、鼻腔内グラム陽性細菌の検出感受性ディ スク試験	1, 2, 3, 5, 6, 7
4	//	細菌の増殖曲線の作成、感受性ディスク試験	1, 2, 3, 6, 7
5	免疫学教室	凝集反応の観察、ELISA(1)	8, 9
6	//	免疫組織の抗菌作用、マクロファージの貪食作用(1)、 ELISA(2)	9、10
7	//	マクロファージの貪食作用 (2)、ELISA (3)、マクロファー ジの活性化 (1)	9、10
8		ラットを用いたPCA反応の観察、イムノクロマトグラフィーを用いたヒト血中IgEの検出、マクロファージの活性化(2)	9、10、11
9		実習試験	

選択科

授業で行っている工夫: 微生物学実習では、できる限り一人一人の学生が興味を持って微生物を取り扱い、観察できるように代表的な細菌を含め身体に付着している微生物も実習材料として用いている。さらに、学校薬剤師の業務の一部を実習に取り入れ、実務への応用も配慮している。また、実習で取り扱う一部の材料はグループ毎に変え、得られる結果が異なるようにし、個々の実験データに責任を持たせる実習を行っている。さらに、日々の実習終了時に必ず各班毎の各学生に口頭質問することで、実習の習得を確認、指導している。

免疫学実習では、実習書に加えて実験内容を図示したプリントを別途配布し、実験方法や原理をイメージしやすいよう配慮している。項目によっては測定対象の検体もグループごとに変え、得られる結果が異なるようにし、個々の実験データに責任を持たせる実習を行っている。さらに、項目毎に各学生に口頭質問することで、実習の習熟度を確認、指導している。

モデル・コアカリ: C8 生命体の成り立ち (4) 小さな生き物たち 【消毒と滅菌】および 【検出方法】 キュラムとの関連 $_{\cap 1}$ 年 4 体防御

- (1) 身体をまもる 【生体防御反応】、【免疫を担当する組織・細胞】、【分子レベルで見た免疫の しくみ】
- (2) 免疫系の破綻・免疫系の応用 【免疫系が関係する疾患】、【免疫反応の利用】
- 成績評価方法:1) 形成的評価 a) 知識:各実習項目毎に、個別あるいはグループ毎に口頭試問を兼ねた面談を行い、フィードバックする。
 - b) 技能:実習時間に、実験手技について、こまめにフィードバックする。
 - c) 態度: 実習期間中を通じて観察を行い、その場でフィードバックする。
 - 2) 総括的評価 a) 知識:実習レポート、出席および最終日に行う実習試験から総合的に評価する。
 - b) 技能:実習期間中の形成的評価におけるフィードバックで改善されれば合と する。
 - c)態度:繰り返しの形成的評価で改善が認められれば合とするが、総合評価に 含める。

教科書:薬学実習書生物系実習Ⅱ

参考書:新しい微生物学(廣川書店)、戸田新細菌学(南山堂)、ブラック微生物学(丸善)、免疫学概説(廣川書店)、免疫学イラストレイテッド(南江堂)、免疫学実習スライド配布プリント

オフィスアワー: 病原微生物学(野口、中南、他) いつでも可。 研究2号棟5階、病原微生物学教室 免疫学教室(安達、三浦、石橋) いつでも可。 研究2号棟5階、免疫学教室

所属教室:野口病原微生物学安達免疫学

特記事項: 微生物学実習では、1年と2年で講義した微生物学の体験の場所です。講義した微生物の内容をもう一度復習し、生きた微生物の形態や臭い、そして抗菌薬の効き方を体験してください。また、薬剤感受性試験や抗菌薬の作用は、3年の疾病と薬物治療 IVにも関連していることを覚えておいてください。

免疫学実習では、2年後期に受講する必修科目「免疫学」と並行して行われます。実験を通して免疫学の基礎を理解することを目標の一つにしています。講義と実習により、免疫の奥深さ・免疫反応の面白さを知り、3年の「臨床免疫学」に向けた基礎固めとしてください。

教員からの一言:微生物実習は、「滅菌に始まり、滅菌で終わります」。普段、見ることができない身近な微生物の世界を覗いてください。

免疫学実習は、ナノグラムオーダーでの物質測定から動物実験まで、精細かつ熟練を必要とする 手技もあります。手技の良し悪しが実験結果を大きく左右するなど難しい実習項目もありますが、 積極的にチャレンジして実験の面白さを体験してください。

不多		落 品	化学実習
人:	公)天	尖口口	川・千天白

Practical Training in Chemistry of Natural Medicines

学 年	第3学年	前期·	後期	前:	期		単	位	1.5	(医薬品合成実習と併) せて単位認定する
■担当教室		■担当	省							
天然医薬品化学教室		竹谷	孝一	一栁	幸生	蓮田	知代			
■実習担当										
薬学基礎実習教育センター		伊奈	郊二							

学習目標 (GIO)

代表的な薬局方収載生薬の確認試験および生薬の成分含量測定法を学んだのち、薬局方収載切断 生薬の未知検体について、薬局方確認試験に基づいた形態観察および化学的分析による同定実験 を行うことにより、代表的な生薬の基本的知識とそれらを活用するための基本的技能を修得する。

▋行動目標 (SBOs)

1	薬局方収載生薬の確認試験を実施、説明できる。
2	生薬の成分含量測定法を説明できる。
3	代表的な生薬の原植物名(学名)、科名、薬用部位、薬効などを列挙できる。
4	代表的な生薬に含有される薬効成分を説明できる。
5	代表的な生薬を鑑定できる。

授業内容

回数	内 容	対応 (SBOs)
1	ゴシュユ、センナ、キキョウの確認試験・ウワウルシの成分含量測定の前処理	1, 2, 3, 4, 5
2	ロートコン、オウレン、ホミカの確認試験・ウワウルシ成分含量測定	1, 2, 3, 4, 5
3	チンピ、ジギトキシン・切断生薬(未知検体)の鑑定(1)	1、3、4、5
4	切断生薬(未知検体)の鑑定(2)	1, 3, 4, 5
5	口頭試問	1、3、4、5
6	実習試験	1, 2, 3, 4, 5

授業で行っている工夫: 未知検体を各自が工夫しながら確認する過程を通して問題解決型の実習を取り入れている。

モデル・コアカリ: C-7 自然が生み出す薬物のうち、(1)薬になる動植鉱物~【薬用植物】、【生薬成分の構造とキュラムとの関連 生合成】、【生薬の同定と品質評価】に相当する内容であり、日本薬局方収載生薬の確認と品質評価が出来るようになることが目標である。

成績評価方法:1) 形成的評価 a) 知識: 随時口頭試問を行う。

b) 技能:実習時間に、手技についてこまめにフィードバックする。

c) 態度:常時観察してフィードバックする。

2) 総括的評価 a) 知識:記述試験、口頭試問の結果を総合的に評価する。

b) 技能:生薬未知検体の実地試験により評価する。

c) 態度:全体を通じての姿勢:出席状況を勘案して評価する。

教 科 書: 化学系実習Ⅲ 実習書(薬学基礎実習教育センター編)

参考書:第十五改正日本薬局方解説書(廣川書店) パートナー生薬学(指田、山崎、竹谷編 南江堂) 天然物化学(田中、野副、相見、永井編 南江堂)

オフィスアワー: 一柳 幸生 いつでも可、要予約。 天然医薬品化学研究室 研究1号館2階

所属教室:一柳幸生天然医薬品化学教室研究1号館2階

-365-

医薬品合成実習	Practical Training in Organic Medicinal Chemistry
	Tractical Training in Organic Medicinal Chemistry

学 年 第3学年	前期・後期 前期	単 位 1.5 (天然医薬品化学実習と) (併せて単位認定する)
■担当教室	■担当者	
有機合成化学教室	田口 武夫 松本 隆司	矢内 光
生物分子有機化学教室	宮岡 宏明 釜池 和大	太田浩一朗
機能性分子設計学教室	青柳 榮 古石 裕治	佐藤 弘人
■実習担当		
薬学基礎実習教育センター	土橋 保夫	

学習目標(GIO)

有機化学および医薬品化学の講義で修得する知識を基礎として、有機化学反応を組み合わせて医薬品の合成実験を行い、医薬品合成法の基本的知識、技能、態度を習得する。

▋行動目標 (SBOs)

1	金属によるニトロ基の還元を実施、説明できる。
2	アミノ酸の等電点沈殿を実施、説明できる。
3	カルボン酸のエステル化を実施、説明できる。
4	活性メチレンのアルキル化を実施、説明できる。
5	減圧蒸留を実施、説明できる。
6	縮合環化による複素環化合物の合成を実施、説明できる。
7	日本薬局方医薬品の化学反応による確認試験を実施、説明できる。

授業内容

回数	内 容	対応 (SBOs)
1	p-ニトロ安息香酸をスズと塩酸で還元して、p-アミノ安息香酸を合成する。	1, 2
2	p-アミノ安息香酸をエタノールと硫酸でエステル化して、局所麻酔薬であるp-アミノ安息香酸エチルを合成する。さらに、確認試験を行う。	3、7
3	エチルマロン酸ジエチルを臭化イソアミルとナトリウムエトキシドでアルキル化する。	4
4	エチルイソアミルマロン酸ジエチルを減圧蒸留で精製する。	5
5	エチルイソアミルマロン酸ジエチルを尿素と縮合環化して催眠鎮静薬であるアモバル ビタールを合成する。さらに確認試験を行う。	6、7
6	総合演習(試験)	

授業で行っている工夫: 毎回の実習終了時に、当日の実験を記録したノートを教員がチェックして実験結果を評価しながら口頭試問を行う。この内容を踏まえて、結果の考察に重点を置いたレポートの提出を求める。いくつかの医薬品の合成を課題として、合成反応と実験方法の立案を課題として与える。

モデル・コアカリ: ○C-4 化学物質の性質と反応 **キュラムとの関連** (1) 化学物質の基本的

(1) 化学物質の基本的性質 (2) 有機化合物の骨格 (3) 官能基

○C-5 ターゲット分子の合成

(1) 官能基の導入・変換

選択科[

成績評価方法:1)形成的評価 a)知識:キーワードを提示して課題と演習問題によりチェックする。

b) 技能および c) 態度:基礎的な化学実験の技能の習得と実験態度については、 実験中にチェックしてフィードバックする。さらに毎回の実験終了報告の際 に、実験結果の評価を行いながら、技能と態度についても助言する。

2) 総括的評価 a) 知識:総合演習(試験)、出席、提出レポートを総合的に評価する。

b) 技能および c) 態度:形成的評価により判断する。総合演習(試験)で不合格の者に対しては、再試験を1回実施する。なお、実習はすべてに出席すること。やむを得ず病気で欠席の場合は、予め教員に連絡して指示に従うこと。

教 科書: 化学系実習Ⅲ実験書(2011年度版)

参考書:有機医薬品合成化学樹林、田口、長坂編 廣川書店

マクマリー有機化学(上)(中) 第6版 伊東ら訳 東京化学同人 フィーザー/ウィリアムソン 有機化学実験 原書8版 磯部ら訳 丸善

新版 基礎有機化学実験 その操作と心得 畑ら著 丸善

オフィスアワー: 土橋 保夫 いつでも可、要予約。 教育1号館2階1205

特 記 事 項:3回目から5回目の実習で合成する医薬品は変更することがある。

生化学実習 Practical Training in Biochemistry and Molecular Biology

学年 第3学年	前期・後期	明 前 其	朝		単	位	1.5
■担当教室	■担当者						
生化学・分子生物学教室	伊東	晃 佐藤	隆	今田	啓介	秋元	賀子
臨床ゲノム生化学教室	豊田裕	夫 大山	邦男	内手	昇	袁	博
■実習担当							

薬学基礎実習教育センター

大塚 勝弘

学習目標 (GIO)

1、2年次の授業科目である生化学 I、Ⅱ およびⅢで、生体成分の構造・性質と機能、それらの代謝、遺伝子とその発現について学んだ。本実習ではこれらを踏まえ、酵素タンパク質および核酸 (DNA および RNA) を実際に取り扱い、逆転写ポリメラーゼ連鎖反応 (RT-PCR) 法およびポリアクリルアミドゲル電気泳動法などの実験を通じてそれらの性質と働きについて理解する。さらに酵素活性、核酸の構造、薬の効き方を解析する生化学的な実験技術を修得する。

┃ 行動目標 (SBOs)

1	酵素反応の特性を一般的な化学反応と対比させて説明できる。
2	代表的な酵素の活性を測定できる。
3	酵素反応における至適pHおよび金属イオンの役割について説明できる。
4	酵素反応速度論について説明できる。
5	DNAとRNAの構造および機能について説明できる。
6	遺伝子工学に関する基本的技術を挙げ、それらについて説明できる。
7	DNAの物理化学的性質を説明できる。
8	DNA を生体組織から抽出できる。
9	DNAの分光学的定量法を説明し、それを実施できる。
10	RNAの物理化学的性質を説明できる。
11	RNAの逆転写反応と逆転写酵素について説明できる。
12	PCR法による遺伝子増幅の原理を説明し、それを実施できる。
13	DNAを電気泳動法により分離できる。
14	薬物による遺伝子発現制御メカニズムの具体例を挙げ、それを説明できる。
15	DNA塩基配列の決定法を説明できる。
16	タンパク質の主要な機能を列挙できる。
17	タンパク質の一次、二次、三次、四次構造を説明できる。
18	タンパク質の分離・同定法を説明し、実施できる。
19	タンパク質の分子量測定法を説明し、実施できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	担当教員全員	酵素反応の至適pHおよび金属イオンの影響	1、2、3
2	担当教員全員	酵素反応の経時変化および酵素量との関係	1, 2
3	担当教員全員	酵素反応速度論	1, 2, 4
4	担当教員全員	仔牛胸腺 DNA の調製	5, 6, 7, 8

回数	担 当	内 容	対応 (SBOs)
5	担当教員全員	DNAの熱変性	5, 6, 7, 9
6	担当教員全員	RT – PCR法による標的遺伝子の増幅	5、6、10、11、 12、15
7	担当教員全員	アガロースゲル電気泳動法によるPCR産物の同定	6、7、13、14
8	担当教員全員	ポリアクリルアミドゲル電気泳動による酵素タンパク質の分離同定 I: ゼラチンザイモグラフィー法	1、2、3、16、17、 18
9	担当教員全員	ポリアクリルアミドゲル電気泳動による酵素タンパク質の分離同定 II:ゲルの染色および酵素タンパク質の解析	1, 2, 3, 14, 18, 19
10	担当教員全員	実習試験	1 ~ 19

授業で行っている工夫: ・実習項目に対応する教科書のページを実習書に記載し、授業との関連を捉えやすくしている。

- ・実習書の中に提出用レポート用紙が印刷されており、ミシン目が入っている。学生は実習項目 が終了するごとにレポート用紙に必要事項を記入し、ミシン目に沿って切り離し、提出できる ようになっている。
- ・基礎的な生化学的実験のみならず疾患関連分子を標的とした最新の遺伝子発現解析実験を取り 入れることで、学生が病態機構を多角的、かつ統合的に理解することができるようになっている。

モデル・コアカリ: C9 牛命をミクロに理解する

キュラムとの関連 (1) 細胞を構成する分子 (2) 生命情報を担う遺伝子

(3) 生命活動を担うタンパク質 (6) 遺伝子を操作する

成 績 評 価 方 法: 生化学実習では、実習中に教員およびTAが巡回し、実習の指導・観察を行う。

- 1) 形成的評価 a) 知識:各実習項目終了毎に、個別あるいはグループ毎に口頭試問を兼ねた面 談を行い、フィードバックする。
 - b) 技能:実習時間に、実験手技について、こまめにフィードバックする。
 - c) 態度: 実習期間中を通じて観察を行い、その場でフィードバックする。
- 2) 総括的評価 a) 知識:実習レポート(20点)、出席(20点) および最終日に行う実習試験(60 点)から総合的に評価する。なお原則として実習試験の得点が6割以上を合 格の条件とする。
 - b) 技能:実習期間中の形成的評価におけるフィードバックで改善されれば合と
 - c) 態度:繰り返しの形成的評価で改善が認められれば合とするが、総合評価に

教 科 書: 薬学実験書(東京薬科大学編)

書:薬学領域の生化学(伊東他編 廣川書店)

オフィスアワー: 生化学・分子生物学教室 原則としていつでも可であるが、事前に予約することが望ましい。 研究2号館6階

> 臨床ゲノム生化学教室 原則としていつでも可であるが、事前に予約することが望ましい。 究2号館6階

> 薬学基礎実習教育センター 原則としていつでも可であるが、事前に予約することが望ましい。 教育1号館3階

室:伊東 晃 生化学・分子生物学教室 所 属 教

佐藤 隆生化学·分子生物学教室 今田 啓介 生化学·分子生物学教室 秋元 賀子 生化学・分子生物学教室 豊田 裕夫 臨床ゲノム生化学教室 大山 邦男 臨床ゲノム生化学教室 内手 昇 臨床ゲノム生化学教室

博 臨床ゲノム生化学教室

大塚 勝弘 薬学基礎実習教育センター

教員からの一言: 実習は複雑な操作法が伴います。必ず前日までに実習書を読んで手順を予習しておくこと。

病態生理学・薬物安全性学実習 Practical Training in Pathophysiology and Drug Safety

学 年 第3学年	前期・後期	後期	単位	1.5
■担当教室	■担当者			
病態生理学教室	市田 公美	篠原 佳彦	長谷川 弘 中	村真希子
薬物代謝安全性学教室	平塚明	小倉健一郎	西山 貴仁 大	沼友和
■実習担当				

薬学基礎実習教育センター

大塚 勝弘

学習目標 (GIO)

医療チームの一員として活躍出来る薬剤師として必要な病態生理学ならびに薬物や化学物質の毒 性・安全性に関する知識・技術・態度を修得する。本実習においては、間接法による血圧測定を 修得し、自分自身の尿を用いて腎臓による体液調節の機構および試験紙による尿一般検査につい て学ぶ。次いで、薬物代謝酵素の誘導、阻害および代謝的活性化機構を動物実験ならびに突然変 異原性試験を通じて学ぶ。さらには薬毒物分析法ならびにシアン化合物の毒性と解毒法について 学ぶ。

┃ 行動目標 (SBOs)

1	血圧の調節機構について説明できる。
2	高血圧について概説できる。
3	間接法による血圧測定ができる。
4	試験紙法による尿の一般検査の項目を列挙できる。
5	試験紙法による尿の一般検査の測定原理を説明できる。
6	尿検査の異常から推測される疾病を挙げることができる。
7	腎の役割について説明できる。
8	腎クリアランスについて説明できる。
9	糸球体ろ過量について説明できる。
10	体液の調節機構について説明できる。
11	尿の生成機構、尿量の調節機構について説明できる。
12	薬物代謝酵素が関わる代謝、代謝的活性化について概説できる。
13	薬物代謝酵素の誘導および阻害機構を概説し、動物実験により薬物相互作用の有無を判定できる。
14	医薬品の安全性試験に用いられる変異原性試験(Ames試験)の原理を説明し、実施できる。
15	代表的な中毒原因物質(乱用薬物を含む)のスクリーニング法を列挙し、解説できる。
16	薬物中毒における生体試料の取扱いについて説明できる。代表的な中毒原因物質を分析できる。
17	化学物質の中毒量、作用器官、中毒症状、救急処置法、解毒法を概説できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	病態生理学教室	実習項目内容説明	1~11
2	//	血圧測定、尿の一般検査(試験紙法)	1~6
3	//	腎機能と体液調節(水、食塩水の負荷、採尿)	7~11
4	//	腎機能と体液調節(尿浸透圧および尿クレアチニンの測定)	7~11
5	薬物代謝安全性学教室	薬物代謝酵素の誘導および阻害と薬物耐性	12、13
6	//	突然変異誘発試験(Ames試験)	14
7	//	シアン化合物の急性毒性と解毒剤	17

X 選 6 択年

回数	担 当	対応 (SBOs)	
8	//	薬毒物分析法(第二属不揮発性毒物)	15、16、17
9	病態生理学教室、薬物 代謝安全性学教室	実習試験	1~17

授業で行っている工夫:・実習専用の実験書を作成し、目的、操作方法等を明確にし、予習に役立てるようにしている。

・操作の前には必ずデモンストレーションを行い、間違いが少なくなるようにしている。

・各実習項目の終了後に個別あるいはグループ面談を行い、実習項目の理解力の向上に努めている。

モデル・コアカリ: C2 化学物質の分析(3)薬毒物の分析

キュラムとの関連 C8 生命体の成り立ち(3)生体の機能調節

C12 環境(1)化学物質の代謝・代謝的活性化

C12 環境(1)化学物質による発がん

C12 環境(1)化学物質による中毒と処置

C14 薬物治療(1)体の変化を知る

C14 薬物治療(2)疾患と薬物治療(心臓疾患等)

C14 薬物治療(3)疾患と薬物治療(腎臓疾患等)

成 績 評 価 方 法: 病態生理学・薬物安全性学実習では、実習中に教員および TA が巡回し、実習の指導・観察・評価を行う。

1) 形成的評価 a) 知識:実習時間中あるいは終了時にグループ毎に口頭で試問を行い、フィードバックする。

b) 技能:実習時間に、実験手技について、こまめにフィードバックする。

c)態度:実習期間中を通じて観察を行い、その場でフィードバックする。

2)総括的評価 a)知識:実習試験、出席点、実習レポートを総合的に評価する。

b) 技能:実習期間中の形成的評価におけるフィードバックで改善されれば合と する。

c)態度:繰り返しの形成的評価で改善が認められれば合とするが、総合評価に 含める。

教 科 書:薬学実験書(東京薬科大学編)

参考書:薬学生のための新臨床医学(市田、細山田編 廣川書店)

疾病と病態生理(橋本、佐藤、豊島編、南江堂)

治療薬マニュアル(医学書院)

今日の治療薬(南江堂)

最新衛生薬学(菊川、別府編 廣川書店)

衛生薬学ー健康と環境ー(渡部、井村編 丸善)

オフィスアワー:病態生理学教室

原則的にいつでも可であるが、事前に予約することが望ましい 研究2号館6階

薬物代謝安全性学教室

原則的にいつでも可であるが、事前に予約することが望ましい 研究 1 号館 4 階

薬学基礎実習教育センター

原則的にいつでも可であるが、事前に予約することが望ましい 教育1号館3階

所属教室:市田公美病態生理学教室

篠原 佳彦 病態生理学教室

長谷川 弘 病態生理学教室

中村真希子 病態生理学教室

平塚 明 薬物代謝安全性学教室

小倉健一郎 薬物代謝安全性学教室

西山 貴仁 薬物代謝安全性学教室

大沼 友和 薬物代謝安全性学教室

大塚 勝弘 薬学基礎実習教育センター

教員からの一言: 実習は複雑な操作法が伴います。必ず前日までに実習書を読んで手順を予習しておくこと。

薬剤学実習 **Practical Training in Pharmaceutics**

学 年	第3学年	前期	・後期	後	期		単 位	1.5
■担当教室		■担論	当者					
薬物送達学教	室	新槇	幸彦	根岸	洋一	髙橋	葉子	
製剤設計学教室		高島	由季	金沢	貴憲			
薬物動態制御学教室		林	正弘	富田	幹雄	瀧沢	裕輔	
■実習担当								
	い	冯 太	☆7 —					

薬学基礎実習教育センター

伊奈 郊二

学習目標 (GIO)

薬物治療においては医薬品がそのまま使用されることはまれであり、多くの場合それを錠剤、カ プセル剤、注射剤などに製剤加工したものが用いられる。薬剤学実習では生物薬剤学、物理薬剤 学および製剤工学関連分野の実習を通じて、医薬品の適切かつ合理的な使用方法、製剤加工の意 義と方法および医薬品の供給と管理などを体得する。

┃ 行動目標 (SBOs)

1	難溶性薬物の可溶化法について説明ができる。
2	表面張力について説明できる。ミセル形成について説明できる。
3	界面活性剤の分類、クラフト点、曇点、HLBについて説明できる。
4	反応速度式と反応機構について説明できる。
5	分解速度定数におよぼす温度、およびpHの影響について説明できる。
6	アレニウス式とアレニウスプロットについて説明できる。
7	ニュートン流動と非ニュートン流動について説明できる。
8	チキソトロピーについて説明できる。
9	レオロジー的性質の測定法について説明できる。
10	粉体の性質について説明できる。
11	製剤材料の物性を測定できる。
12	製剤化の単位操作および汎用される製剤機械について説明できる。
13	単位操作を組み合わせて代表的な製剤を調製できる。
14	日本薬局方の製剤に関連する試験法(製剤均一性試験法、比表面積測定法、崩壊試験法など)を列挙できる。
15	日本薬局方の製剤に関連する代表的な試験法(製剤均一性試験法、崩壊試験法、硬度試験法、摩損度試験法 など)を実施し、品質管理に適用できる。
16	薬物動態に関わる代表的なパラメーターを列挙し、概説できる。
17	薬物(化学物質)のpHによる分子形、イオン形の存在比率変化を説明できる。
18	溶解した物質の膜透過速度について説明できる。
19	線形 1 -コンパートメントモデルを説明し、これに基づいた計算ができる。
20	モデルによらない薬物動態の解析法を列挙し説明できる。
21	全身クリアランスについて説明し、計算できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	新槇、根岸、高橋	物理薬剤学実習 1 界面活性剤のCMC と可溶化能:SLS によるスダンⅢの可溶化	1, 2, 3
2	//	物理薬剤学実習2 医薬品の安定性:アスピリンの溶液中での 安定性におよぼす温度の影響(アレニウスプロットによる解析)	4、5、6
3	//	物理薬剤学実習3 レオロジーと演習	7、8、9
4	高島、金沢	製剤工学実習 1 粉体物性の測定:流動性評価と分散分析による解析、透過法による比表面積測定、光学顕微鏡法による粒度分布測定 錠剤の製造:打錠用顆粒の調製	10、11、12
5	//	製剤工学実習2 錠剤の製造:打錠顆粒・錠剤の物性測定:水分、硬度、摩損度、製剤均一性試験	12、13、14、15
6	//	製剤工学実習3 錠剤の物性測定:崩壊試験、溶出プロファイルの解析	14、15
7	林、富田、瀧沢	生物薬剤学実習 1 pH分配仮説実験およびデータ解析を行い、 油水分配係数、pKaを算出し、薬物の生体膜透過性とpHとの 関係を理解する	17、18
8	//	生物薬剤学実習2 薬物速度論 I : in vitro実験により、経口投与後の薬物の血中濃度および消化管内濃度を測定し、データ解析のための各種グラフ作成法を修得する	16、19、20、21
9	"	生物薬剤学実習3 薬物速度論Ⅱ:薬物速度論Ⅰで得られた各種データを用いて、1-コンパートメントモデルによる線形薬物速度論解析およびモーメント解析を行い、薬物速度論を理解する	16, 19, 20, 21
10	担当教員全員	実習試験	1-21

授業で行っている工夫:できるだけわかりやすく解説し、口頭試問を行うことにより理解度をフィードバックしている。

モデル・コアカリ:本実習の到達目標としてはC13薬の効くプロセスの内【薬動学】に関する項目、C16製剤化のキュラムとの関連 サイエンスに関する項目が相当する。

成績評価方法: 1) 形成的評価 a) 知識:実験により得られたデータの良否を口頭試問によりフィードバックする。

b) 技能:実習時間に、手技について、こまめにフィードバックする。

c) 態度: 実習期間中を通じて、フィードバックを行う。

2) 総括的評価 a) 知識:定期試験及びレポートを総合的に評価する。

b) 技能:レポートにより評価する。

c)態度:出席状況、実習態度を評価する。

教 書:実習書(薬学基礎実習教育センター編)

オフィスアワー: いつでも可、要予約。

所属教室:新模幸彦 薬物送達学教室研究1号館3階

根岸洋一 薬物送達学教室研究1号館3階

高橋葉子 薬物送達学教室研究 1 号館 3 階

高島由季 製剤設計学教室研究2号館3階

金沢貴憲 製剤設計学教室研究2号館3階

林 正弘 薬物動態制御学教室研究 1 号館 3 階

富田幹雄 薬物動態制御学教室研究 1 号館 3 階

瀧沢裕輔 薬物動態制御学教室研究 1 号館 3 階

伊奈郊二 薬学基礎実習教育センター教育2号館2206

Π

薬理学実習 Practical Training in Pharmacology

学年 第4学年	前期・後期	前期	単位	1.5
■担当教室	■担当者			
分子細胞病態薬理学教室	田野中浩一	高木 教夫 す	1.ノ内徹郎	
内分泌・神経薬理学教室	立川 英一	田村 和広 き	三江 幹浩 沓掛	真彦

■実習担当

薬学基礎実習教育センター

学習目標 (GIO)

医薬品の薬理作用に関する知識は薬剤師および薬学を学ぶものにとって必須である。様々な化合物および天然物などを医薬品としての有用性を判断する医薬品開発や薬剤師としての職能に直結する重要な科目であり、機能形態学、生化学、有機化学など広範囲の知識も合わせて要求される。本実習では、実験動物を用いて臓器レベルあるいは個体レベルでどの様な機序を介して薬物の効果が発揮されるかを態度および技能の点から理解し、講義・演習で得た知識と効果的に連動させ、科学的思考の醸成を目標とする。

│ 行動目標 (SBOs)

1	実験動物における倫理について配慮する。[態度]
2	代表的な実験動物の性質を理解し、それらを適正に取り扱うことができる。[技能]
3	実験動物での代表的な薬物投与法を実施できる。[技能]
4	中枢神経に作用する代表的な薬物(麻酔薬)の効果を測定できる。[技能]
5	腎臓のネフロンに作用する代表的な薬物(利尿薬)の効果を測定できる。[技能]
6	知覚神経、運動神経に作用する代表的な薬物(鎮痛薬)の効果を測定できる。[技能]
7	自律神経系(腸管、血管、心臓)に作用する代表的な薬物の効果を測定できる。[技能]
8	薬物効果の評価方法を学び、実習で得られたデータの集計とその評価ができる。[技能]

授業内容

回数	担 当	内 容	対応 (SBOs)
1	田野中、高木、丸ノ内	麻酔薬の作用	1、2、3、4
2	立川、田村、沓掛	利尿薬の作用	1, 2, 3, 5
3	立川、田村、沓掛	鎮痛薬の作用	1, 2, 3, 6
4	担当者全員	演習 1 および薬効評価	1、4、5、6、 7、8
5	立川、田村、沓掛	腸管平滑筋に作用する薬物	1, 2, 3, 7
6	田野中、高木、丸ノ内	血管平滑筋に作用する薬物	1, 2, 3, 7
7	田野中、高木、丸ノ内	心臓に作用する薬物	1、2、3、7
8	担当者全員	演習2	1、4、5、6、 7、8
9	担当者全員	実習試験	

選択年科次

| 実習科目

授業で行っている工夫: 本実習では、4あるいは8名のグループで実習を行う。実験目的の理解、手技習得、データ解析後の検討をSGDを中心に進め、総合的な理解ができるようにする。実習レポートには、実験結果・ 考察だけでなく、実習中の口頭試問への対応やSGDの内容についての記述も要求する。

モデル・コアカリ:[薬と疾病]C13 薬の効くプロセス

キュラムとの関連 (1)薬の作用と生体内運命[動物実験]、

(2) [薬の効き方 []の6、[自律神経系]4、[知覚神経・運動神経に作用する薬]の3の項目

成績評価方法: 定期的に実習室内を巡回し、実験手技およびその科学的根拠についてグループあるいは個別に指導を行う。実験内容(目的などを含む)およびその関連知識に関する口頭試問とその後のフィードバックを行い、態度・技能の評価を行う。なお、態度の評価には出席率および提出物の期限遵守も含める。これらの評価に加え、実習試験と実習レポート(課題)の結果から総合的に成績評価を行う。

教 科 書: 医療系実習Ⅱ 薬理学実習(薬学基礎実習教育センター編)

参 **考** 書:薬理学実習の実際とデータの見方(日本私立薬科大学協会薬理学関連教科検討委員会編 南山堂) 新しい機能形態学-ヒトの成り立ちとその働き-(小林、馬場、平井編 廣川書店) 最新 薬の効き方(立川、田野中編 愛知出版)

オフィスアワー: 本実習担当教員 いつでも可(原則として実習終了後)

所属 教室: 田野中浩一、高木教夫、丸ノ内徹郎 分子細胞病態薬理学 研究2号館504号室 立川 英一、田村和広、吉江 幹浩、沓掛 真彦 内分泌・神経薬理学 研究2号館404号室

特 記 事 項: 出席点に関しては、原則、全出席とする(やむを得ない理由以外での欠席は認めない)。 欠席した場合には、欠席届とそれを証明する書類を添付して、担当教員に提出する。

教員からの一言: 本実習では、単に薬理学関連の実験を行うだけでなく、実習及び演習の中で機能形態学、生化学、 有機化学等の関連科目の復習も行います。実習中に教員が実習班ごとにあるいは演習中に各自に 様々な質問をしますので、十分な返答ができない場合には、実習班内で良く検討し、その結果を レポートに加えてください。

衛生化学・公衆衛生学実習

Practical Training in Nutrient Chemistry and Environmental Health

学 年	第4学年	前期	・後期	前	期		単	位	1.5	
■担当教室		■担	当者							
環境生体応答学	学教室	別府	正敏	平野	予 和也	三木	雄一			
衛生化学教室		早川原	善 善 を に に に に に に に に に に に に に	安藤	堅	藤野	智史			
■実習担当										
	カラカンター	木多	委雄							

学習目標 (GIO)

人とその集団の健康の保持・増進に貢献できるようになるために、栄養と健康に係わる食品の安全性、及び生活環境を取り囲む汚染物質や公害を引き起こす現象等について理解し、もってこれらに関する基本的知識、技能、態度を習得する。

▋行動目標 (SBOs)

1	油脂が変敗する機構を説明し、油脂の変質試験を実施できる。
2	食品中のタンパク質の栄養的な価値(栄養価)を説明し、セミミクロケルダール法によるタンパク質含有量 の測定を実施できる。
3	プロビタミン A(eta 一カロテン)の役割を説明し、食品中に含まれる eta – カロテンを定量できる。
4	ビタミンB1の役割を説明し、蛍光光度法を用いてビタミンB1を定量できる。
5	普通室内空気試験の意義と測定方法を説明できる。
6	大気の汚染に係わる環境基準の項目が列挙でき、その測定方法について説明できる。
7	水道法に基づく水質基準を概説できる。残留塩素および硬度の測定方法を説明できる。
8	排水基準を理解し、有害廃液や、生活雑排水の処理方法が説明できる。
9	水質汚濁の評価方法を説明でき、公共用水域に対する環境基準について概説できる。

授業内容

回数	担 当	内 容	対応 (SBOs)
1	衛生化学教室	脂質試験	1
2	//	窒素化合物(タンパク質)試験	2
3	//	βーカロテンの試験	3
4	//	ビタミンB1の試験	4
5	環境生体応答学教室	室内空気試験:室内環境	5
6	//	大気汚染試験:大気環境	6
7	//	上水および下水	7、8
8	//	水質汚濁試験:公共用水	9
9		実習試験	1~9

選3年次

授業で行っている工夫:衛生薬学実習では、個々の実験データに興味を持ち、それに責任を持たせる実習を行っている。 さらに、項目毎に各学生に口頭質問することで、実習の習熟度を確認しつつ指導している。

モデル・コアカリ: C11健康(1)栄養と健康、C12環境(2)生活環境と健康

キュラムとの関連

成績評価方法:1)形成的評価 a)知識:各実習項目毎に、個別あるいはグループ毎に口頭試問を兼ねた面談を行い、フィードバックする。

- b) 技能:実習時間に、実験手技について、こまめにフィードバックする。
- c) 態度:実習期間中を通じて観察を行い、その場でフィードバックする。
- 2) 総括的評価 a) 知識:実習レポート、出席および最終日に行う実習試験から総合的に評価する。
 - b) 技能:実習期間中の形成的評価におけるフィードバックで改善されれば合と する。
 - c)態度:繰り返しの形成的評価で改善が認められれば合とするが、総合評価に 含める。

教 科 書:薬学実験書(東京薬科大学編)

考 書:衛生試験法·注解2010

必携·衛生試験法 第15改正日本薬局方

第7版食品添加物公定書·解説書 5訂追補 日本食品標準成分表 最新衛生薬学(廣川書店)

オフィスアワー: 原則的にいつでも可であるが、事前に予約することが望ましい。

V 必 多 多 多

学系実習Ⅳ

Practical Training in Chemistry IV

第4学年

前期・後期

単 位

1.5

共用試験対策委員会委員

学習目標

薬学教育モデル・コアカリキュラムに基づき、4年次に行われるCBTに対応できる能力を養う。

(GIO)

行動目標 (SBOs)

薬学教育モデル・コアカリキュラム、A:ヒューマニズム、Bイントロダクション、C:薬学専門教育(物 理系・化学系・生物系薬学、健康と環境、薬と疾病、医薬品をつくる、薬学と社会について、CBT形式 の問題に対応できる。

授業で行っている工夫:教職員が分担して作成したCBT形式の問題を、コンピューターまたはマークシートを用いて解答

し、さらに個人またはグループでディスカッションし、問題対応能力を高める。

成績評価方法:共用試験(CBT、OSCE)に合格したものに単位を与える。

生物系実習Ⅳ

|系実習IV

第4学年

Practical Training in Biological Science IV

年

前期・後期

後 期 単 位 1.5

共用試験対策委員会委員

学習目標

共用試験OSCE出題範囲に基づき、4年次に行われるOSCEに対応できる能力を養う。

(GIO)

行動目標 (SBOs)

OSCEで行われる各ステーション【患者・来局者応対 (病棟での初回面談)、薬剤の調製(1) (計数調剤)、調剤鑑査 (調剤鑑査)、無菌操作の実践 (注射剤混合)、薬剤の調製(2)(水剤)、 情報の提供 (薬剤交付)】に対応できる。

授業で行っている工夫: 本学で設置されている施設を利用して各ステーションを体験し、その結果についてグループでの

ディスカッションおよび担当教員からの指導により対応能力を高める。

成績評価方法:共用試験(CBT、OSCE)に合格したものに単位を与える。

事前実務実習 Introductory Course in Pharmacy Practice

学年 第4学年	前期・後期	前期	単 位 4
■担当教室	■担当者		
薬学実務実習教育センター	三溝 和男 別生伸太郎		俊 井上みち子 武井佐和子 真向 安藤 利亮
医薬品安全管理学教室	内野 克喜	杉浦 宗	宗敏
臨床薬剤学教室	太田 俳	下枝 貞	彦
医療実務薬学教室	畝崎 榮	竹内 裕	紀 川口 崇
臨床薬効解析学教室	山田 安彦	高柳 理	里早 横山 晴子
臨床薬理学教室	平野 俊彦	恩田 健	建二 田中 祥子
総合医療薬学講座	山田 純青	】 大友 隆	圣之
臨床薬学教室	古田 階	柴崎 浩	告美 横川 彰朋
一般用医薬品学教室	渡辺 謹三	成井浩	-
薬学実務実習研修センター	松本 有右	ī	
薬局管理学講座	岡田 寛征	和久田光	光宣
医薬品情報解析学教室	土橋 郎	倉田 香	5織
機能性分子設計学教室(リサーチセンター	-) 小杉 義幸	ŧ	

学習目標 (GIO)

実務実習事前学習は、卒業後、医療、健康保険事業に参画できるようになるための病院実務実習・薬局実務実習に先立って、大学内で調剤および製剤、服薬指導などの薬剤師職務に必要な基本的知識、技能、態度を修得するため、実務実習モデル・コアカリキュラムの実務実習事前学習に従い、講義、演習、SGD、実習で次の7つの学習目標を達成する。

1	事前学習を始めるにあたって 事前学習に積極的に取り組むために、病院と薬局での薬剤師業務の概要と社会的使命を理解する。 ①薬剤師業務に注目する 1 (SBOs1-4) ②薬剤師業務に注目する 2 (SBOs5-6) ③チーム医療に注目する (SBOs7-8) ④医薬分業に注目する (SBOs4,9)
2	 処方せんと調剤 医療チームの一員として調剤を正確に実施できるようになるために、処方せん授受から服薬指導までの流れに関連する基本的知識、技能、態度を修得する。 ①医薬品の用法・用量(SBOs10-14) ②調剤と処方せんの基礎(SBOs15-27) ③調剤室業務入門(SBOs28-31)
3	疑義照会 処方せん上の問題点が指摘できるようになるために、用法・用量、禁忌、相互作用などを含む調剤上注 意すべき事項に関する基本的知識、技能、態度を修得する。 ①疑義照会の意義と根拠 1(SBOs32-36) ②疑義照会の意義と根拠 2(SBOs37-40) ③疑義照会入門(SBOs23-24、37-44)

医薬品管理と供給 病院・薬局における医薬品の管理と供給を正しく行うために、内服薬、注射剤などの取扱い、院内製剤・ 薬局製剤および消毒薬と院内感染防止に関する基本的知識と技能を修得する。 ①医薬品の安定性に注目する(SBOs45-46) 4 ②特別な配慮を要する医薬品(SBOs47-55) ③製剤化の基礎 (SBOs56-59) ④注射剤と輸液(SBOs60-63) ⑤消毒薬と院内感染防止(SBOs64-66) リスクマネージメント 薬剤師業務が人命にかかわる仕事であることを認識し、患者が被る危険を回避できるようになるために、 医薬品の副作用、 調剤上の危険因子とその対策染などに関する基本的知識、技能、態度を修得する。 5 ①安全管理に注目する (SBOs67-68) ②副作用に注目する 1 (SBOs69-70) ③副作用に注目する2 (SBOs71) ④リスクマネージメント入門(SBOs72-73) 服薬指導と患者情報 患者の安全確保とQOL向上に貢献できるようになるために、服薬指導などに関する基本的知識、技能、 態度を修得する。 6 ①服薬指導に必要な技能と態度(SBOs74-81) ②患者情報の重要性に注目する (SBOs81-84) ③服薬指導入門 (SBOs85-89) 事前学習のまとめ 7 病院実務実習、薬局実務実習に先立って大学内で行った事前学習の効果を高めるために、調剤および服

薬指導などの 薬剤師職務を総合的に実習する。(SBOs90-95)

▋行動目標 (SBOs)

11	
1	医療における薬剤師の使命や倫理などについて概説できる。
2	医療の現状をふまえて、薬剤師の位置づけと役割について概説できる。
3	医療の現状をふまえて病院薬剤師の業務を概説できる。
4	医療の現状をふまえて薬局薬剤師の業務と保険調剤について概説できる。
5	薬剤師が行う業務が患者本位のファーマシューティカルケアの概念にそったものであることについて討議する。(態度)
6	自分の能力や責任範囲の限界と他の医療従事者との連携について討議する。(態度)
7	医療チームの構成や各構成員の役割、連携と責任体制を説明できる。
8	チーム医療における薬剤師の役割を説明できる。
9	医薬分業の仕組みと意義を概説できる。
10	代表的な医薬品の用法・用量および投与計画について説明できる。
11	患者に適した剤形を選択できる。(知識・技能)
12	患者の特性(新生児、小児、高齢者、妊婦など)に適した用法・用量について説明できる。
13	患者の特性に適した用量を計算できる。(技能)
14	病態(腎、肝疾患など)に適した用量設定について説明できる。
15	調剤を法的根拠に基づいて説明できる。
16	医薬品の適正使用と薬剤師の役割について説明できる。
17	処方せんの法的位置づけと機能について説明できる。
18	処方せんの種類、特徴、必要記載事項について説明できる。
19	処方オーダリングシステムを概説できる。
20	調剤業務の基本操作および調剤における安全性確保と薬剤師の役割について説明できる。
21	処方せん鑑査と疑義照会の意義と法的根拠を説明できる。
22	代表的な処方せん例(注射剤含む)の鑑査における注意点を説明できる。
23	不適切な処方せん例について、その理由を説明できる。
24	不適切な処方せんの処置について説明できる。
25	麻薬調剤の基本を説明できる。
26	抗悪性腫瘍剤の調剤の基本を説明できる。
27	注射剤調剤の基本を説明できる。
28	

29	型がよりを15世紀の15世紀の15世紀の15世紀の15世紀の15世紀の15世紀の15世紀の
30	調剤された医薬品の鑑査をシミュレートできる。(技能)
31	誤りを生じやすい調剤例を列挙できる。
32	代表的な配合変化の組み合わせとその理由を説明できる。
33	特定の配合によって生じる医薬品の性状、外観の変化を観察する。(技能)
34	注射剤の代表的な配合変化を列挙し、その原因を説明できる。
35	代表的な配合変化を検出できる。(技能)
36	処方せんの問題点を解決するための薬剤師と医師の連携の重要性を討議する。(態度)
37	代表的な医薬品について効能・効果、用法・用量を列挙できる。
38	代表的な医薬品について警告、禁忌、副作用を列挙できる。
39	代表的な医薬品について相互作用を列挙できる。
40	疑義照会の意義について、法的根拠を含めて説明できる。
41	代表的な処方せん例の鑑査をシミュレートできる。(技能)
42	処方せんの鑑査の意義とその必要性について討議する。(態度)
43	疑義照会の流れを説明できる。
44	疑義照会をシミュレートする。(技能・態度)
45	医薬品管理の意義と必要性について説明できる。
46	代表的な剤形の安定性、保存性について説明できる。
47	毒薬・劇薬の管理および取扱いについて説明できる。
48	麻薬、向精神薬などの管理と取扱い(投薬、廃棄など)について説明できる。
49	血漿分画製剤の管理および取扱いについて説明できる。
50	輸血用血液製剤の管理および取扱いについて説明できる。
51	代表的な生物製剤の種類と適応を説明できる。
52	生物製剤の管理と取扱い(投薬、廃棄など)について説明できる。
53	麻薬の取扱いをシミュレートできる。(技能)
54	代表的な放射性医薬品の種類と用途を説明できる。
55	放射性医薬品の管理と取扱い(投薬、廃棄など)について説明できる。
56	院内製剤の意義、調製上の手続き、品質管理などについて説明できる。
57	薬局製剤の意義、調製上の手続き、品質管理などについて説明できる。
58	代表的な院内製剤を調製できる。(技能)
59	
60	無菌操作の原理を説明し、基本的な無菌操作を実施できる。(知識・技能)
61	
62	
63	
64	代表的な消毒薬の用途、使用濃度を説明できる。
65	消毒薬調製時の注意点を説明できる。
66	院内感染の回避方法について説明できる。
67	薬剤師業務の中で起こりやすい事故事例を列挙し、その原因を説明できる。
68	誤りを生じやすい投薬例を列挙できる。
69	副作用発見のためのフィジカルアセスメントについて説明できる。
70	基本的なフィジカルアセスメントがシュミレートできる。(技能)
71	代表的な医薬品の副作用の初期症状と検査所見を具体的に説明できる。
72	リスクを回避するための具体策を提案する。(態度)
73	事故が起こった場合の対処方法について提案する。(態度)
74	事成が過ごうだ物目の対処が成について延来する。(感受) 患者の基本的権利、自己決定権、インフォームド・コンセント、守秘義務などについて具体的に説明できる。
75	服薬指導の意義を法的、倫理的、科学的根拠に基づいて説明できる。
76	代表的な医薬品の服薬指導上の注意点を列挙できる。
77	代表的な疾患において注意すべき生活指導項目を列挙できる。
78 79	インフォームド・コンセント、守秘義務などに配慮する。(態度) 適切な言葉を選び、適切な手順を経て服薬指導する。(技能・態度)
79	
80	医薬品に不安、抵抗感を持つ理由を理解し、それを除く努力をする。(知識・態度)
81	患者接遇に際し、配慮しなければならない注意点を列挙できる。
82	服薬指導に必要な患者情報を列挙できる。
83	患者背景、情報(コンプライアンス、経過、診療録、薬歴など)を把握できる。(技能)
84 85	医師、看護師などとの情報の共有化の重要性を説明できる。 代表的な医薬品について、適切な服薬指導ができる。(知識・技能)

86	共感的態度で患者インタビューを行う。(技能・態度)
87	患者背景に配慮した服薬指導ができる。(技能)
88	代表的な症例についての服薬指導の内容を適切に記録できる。(技能)
89	OTCの基本的な服薬指導ができる。(技能・態度)
90	代表的な処方せん例の鑑査をシミュレートできる。(技能)
91	疑義照会をシミュレートする。(技能・態度)
92	処方せん例に従って、計数調剤をシミュレートできる。(技能)
93	処方せん例に従って、計量調剤をシミュレートできる。(技能)
94	調剤された医薬品の鑑査をシミュレートできる。(技能)
95	患者背景に配慮した服薬指導ができる。(技能)

授業内容

※詳細は実習時間割を参照のこと

時間割番号	対応 (SBO s)	内容	回数
111	1,2	講義	1
112	7,8	講義	1
113	9	講義	1
114	3	講義	1
115	4	講義	1
131	5,6	SGD	3
221	10	講義・演習	2
222	11	講義・演習	2
223	12,13	講義・演習	2
224	14	講義・演習	2
225	15-27	講義・演習	12
252	28	実習	3
253	29 (散剤)	実習	3
254	29 (水剤)	実習	3
255	29 (軟膏)	実習	3
256	30-31	実習	3
311	37-39	講義	1
321	36	講義・演習	3
322	23-24、3743,	講義・演習	8
351	32-33	実習	3
352	34-35	実習	3
353	44	実習	3
411	45-46	講義	1
412	47-48	講義	1
413	54-55	講義	1
414	56-57	講義	1
415	64-66	講義	1
451	47-53	実習	2
452	58-59	実習	3
453	60-61	実習	6
454	62-63	実習	2
511	67-68	講義	1
512	71	講義	3
531	72-73	SGD	3
541	71	演習	4
551	69-70	実習	2
611	74-77、81	講義	1
642	78-81	演習	3
651	81-84	実習	3
652	85-88	実習	3
653	81-84	実習	3
654	85-88	実習	3

X 選 6 択年

時間割番号	対応 (SBO s)	内容	回数
655	89	実習	3
751	90-95	実習	15
特S601	74	特別講義	2

※1回の時間:70分

授業で行っている工夫: 病院・薬局へ実務実習に行く前の事前教育である。実務に即した講義、演習、実習、SGDなど多様な内容の学習があり、必要に応じて、試験、レポート、プロダクトの作製、評価表などを活用して実務実習に必要な知識、技能、態度を修得させる。計量調剤実習については一人一台の調剤台、注射剤調剤ではクリーンベンチ内に液晶モニターの設置により、充実した実習を可能にした。さらに、散剤調剤台には集塵装置を設置して学生の健康面への配慮をした。また、これからの薬剤師に必要となる副作用防止のために実施するフィジカルアセスメントのバイタルサインについて基本実習を導入した。

学習内容によっては学外のボランティアによる模擬患者や医療現場の薬剤師等が参画する。また、 テレビ会議システムを活用して医療現場の薬剤師とリアルタイムにディスカッションを行う。

モデル・コアカリ: 実務実習モデル・ コアカリキュラムに示された実務実習前学習の一般目標(GIO)を学習目標に、キュラムとの関連 到達目標(SBOs)を行動目標にしている。さらに、本学独自の行動目標を付加している。

成 績 評 価 方 法: 1) 形成的評価 a) 知識:授業で示した演習問題を繰り返し実施する。

b) 技能:実習中に手順、手技、器具の扱い等について繰り返しフィードバック する。

c) 態度: 実習中に適時フィードバックする。

2) 総括的評価 a) 知識:演習レポート、プロダクト、筆記試験等で総合的に評価する。

b) 技能:実技試験で評価する。

c) 態度:出席と形成評価での改善状況や実技試験において態度を評価する。

教 科 書: 実務実習事前学習実習書(東京薬科大学版)

ハンディ版医薬品集を1冊(下記のものが代表的)

○北原光夫 監修:治療薬マニュアル (医学書院)

○高久史麿 監修:治療薬ハンドブック(じほう)

○浦部晶夫/島田和幸/川合眞一編:今日の治療薬

参 考 書:日本薬学会編 スタンダード薬学シリーズ 10、

実務実習事前学習一病院・薬局実習に行く前に一(東京化学同人)

伊賀立二監修、鈴木洋史、中村均、内野克喜編集:病院・薬局実務シリーズⅠ

内服薬調剤 基本と実践(じほう)

伊賀立二監修、鈴木洋史、中村均、内野克喜、山村喜一編集:病院・薬局実務シリーズⅡ

注射薬調剤 基本と実践(じほう)

柴崎正勝、赤池昭紀、橋田充 監修、厚田幸一郎、畝崎榮、栄田敏之編集:

実務実習事前学習のための調剤学(広川書店)

オフィスアワー: いつでも可

所属教室:薬学実務実習教育センター教育5号館6階

 \blacksquare

Advanced Pharmacy Practice Experiences

	学	年	第55	学年	前期・後期	通	年	単	位	20
教	授	太田	伸	臨床薬剤学教室	医療薬学	科、	医療薬物薬学科、	医療衛生	E薬学科	
教	授	畝崎	榮	医療実務薬学教	室 医療薬学	料、	医療薬物薬学科、	医療衛生	E薬学科	
教	授	三巻	祥浩	漢方資源応用学	医療薬学	料、	医療薬物薬学科、	医療衛生	E薬学科	

薬学実務実習教育センター 医療薬学科、医療薬物薬学科、医療衛生薬学科 その他全教室および研究室の教員が担当する

学習目標 (GIO)

モデルコアカリキュラムに基づき病院実習 11 週間、薬局実習 11 週間を実施する。実務実習の 目標は、病院実務実習においては、病院薬剤師の業務と責任を理解し、チーム医療に参画できる ようになるために、調剤、製剤、服薬指導などの薬剤師業務に関する基本的知識、技能、態度を 修得することである。一方、薬局実務実習においては、薬局の社会的役割と責任を理解し、地域 医療に参画できるようになるために、保険調剤、医薬品などの供給・管理、情報提供、健康相談、 医療機関や地域との関わりについての基本的な知識、技能、態度を修得することである。

行動目標 (SBOs)

実務実習モデルコアカリキュラムのSB0203項目(病院薬局実務実習Ⅰ、Ⅱ:東京化学同人参照)

成績評価方法: 1.形成的評価

①中間評価及び最終評価

各実習施設の指導薬剤師に形成的評価としての中間評価と最終評価を依頼する。中間評価、最 終評価ともに評価分類項目ごとに3段階で評価する。評価の方法として、知識に関する項目は「口 頭」、技能・態度に関する項目は「観察」にて評価してもらう。

【形成的評価】

A:十分に到達した

B: 到達した

C:まだ不十分 の3段階である。

中間評価で「A」評価だった到達目標については、その時点で目標達成となる。よって最終評 価では、中間評価の時点で「B」あるいは「C」であった到達目標を中心に評価することとなる。

②実習日誌(ポートフォリオ及び自己評価)

学生が日々行う実習の記録は、ポートフォリオ形式とした。ポートフォリオとは、資料や記録 を一元化して保存したファイルである。学生は常に自ら学習目標を立案し、日々行われる実務 実習のなかでポートフォリオを活用して目標到達度を繰り返し自己評価する。指導薬剤師と担 当教員が、作成されるポートフォリオから客観的評価を行う。

③自己評価表

学生は各自、日々実施した実習の到達度について、自己評価を実施する。自己評価は到達目標 ごとに3段階とする。

【自己評価】

A: よくできた

B:できた

C:できない の3段階である。

学生は実務実習を通して到達目標をどれだけ理解しているかを自身で確認することを目的に、 到達目標ごと課題の要点をまとめる。また、指導薬剤師からの実習内容に関連した課題レポー トの提出を行い評価される。

選3択年

2.単位認定について

実務実習の単位認定は、以下の①から④の評価基準をもとに判定する。なお、単位認定にあたっては、以下の①から④の要件について病院・薬局実習運営委員会が統括的評価表を作成し、実務実習評価委員会が合否判定を行い、最終的な単位認定は教授総会により決定する。

①出席状況

- ◆全出席を原則とする。
- ◆ただし、正当な理由(忌引きや体調不良等)があり、未到達の項目がない場合に限り、通算 5日以内の欠席であればこれを認める。
- ◆通算6日以上10日以下の欠席については、特別措置として未到達な項目における追実習の 受講により補完できたと判断された場合、出席要件を満たしたものとする。

②評価点数

実習施設の指導薬剤師による形成的評価表における評価分類項目ごとの最終評価に基づき判定する。

③実習日誌の提出

実習期間に使用した実習日誌を実習終了後の定められた期間内に提出しなければならない。原 則として本学仕様の実習日誌とするが実習施設指定のものがあれば、それでも可とする。

④集合研修·報告会出席

実習中の指定された研修日および実習終了後に行われる実習報告会には必ず出席することが必要となる。

教 科 書: 各施設毎に異なる

参 考 書:日本薬学会編 スタンダード薬学シリーズ11 病院薬局実務実習(東京化学同人)

オフィスアワー:太田 伸 予約すればいつでも可能。 臨床薬剤学教室 畝崎 榮 予約すればいつでも可能。 医療実務薬学教室

三巻 祥浩 予約すればいつでも可能。 漢方資源応用学

三溝 和男 予約すればいつでも可能。 薬学実務実習教育センター

所属教室:全ての教室および研究室の教員がコーディネーターとなり実習施設へ訪問する。

特 記 事 項: 病院·薬局実務実習はそれぞれ I 期 (5月~7月)、Ⅱ期 (9月~11月) 及びⅢ期 (1月~3月) の期間で実施する。

病院実習施設客員教員

◆客員教授	林 昌洋	平島 徹	稲村 澄子	菊池 映子
明石 貴雄	藤掛 佳男	本間 真人	井上 勝	北岡 晃
赤瀬 朋秀	舟越 亮寛	前 彰	岩崎修	北原みゆき
石井 嘉之	村上 敏明	松木 俊明	上原 美佐	北村 正樹
井上 順博	本橋 茂	矢作 栄男	内田ゆみ子	北村 好申
岩﨑 文男	山村 喜一	渡辺 一夫	畝本 易	桐林 美緒
大澤眞希子			梅田 将光	栗原 貞夫
岡孝則	◆客員准教授	◆客員講師	江口 裕三	計良 貴之
奥山 清	綾部由紀乃	足助 崇之	大井 修一	髙坂 聡
加賀谷 肇	安藤 栄輝	東加奈子	大川戸悠子	小林 庸子
川久保 孝	猪股 克彦	有竹 昌史	大下 瑠美	小松 豊
幸田 幸直	大谷 道輝	飯田 純一	岡田 賢二	小山 憲一
齋藤 昌久	河井 良智	伊賀 正典	落合 明伯	佐藤 武
佐藤 透	神林 泰行	五十嵐 崇	蔭山 博之	佐藤 美絵
篠原 高雄	吉川明彦	五十嵐正博	勝俣はるみ	三宮 忠
関山 正夫	斎藤 恭正	石井 文雄	加藤 一雅	篠原 徹
田中 恒明	鈴木 力	石田 幸絵	加藤潤一郎	嶋方 順子
永井 茂	中村 益美	磯貝 博之	金田美咲緒	嶋田 泰久
根反 一明	並木 路広	伊東 俊雅	亀井 陽子	清水 孝一
長谷川英雄	服部 一夫	伊藤 忠明	河合 典子	下兼操 隼

| 実習科目

菅原 直人 田中 真砂 廣瀬 幸文 松村 泰之 鈴木 篤 谷村青志路 深沢 貴志 松本 晃一 信也 昌子 鈴木 田村 宏美 布川 松元 美香 関戸加奈恵 千葉 晶子 藤井 博之 水野 知子 関根 祐介 長尾 達哉 藤塚 —行 $=\mathbb{H}$ 恭平 妹尾裕美子 中西 降箍ごずえ 美恵 峰島 宏枝 添田 博 中村 薫 堀江 茂 宮崎 雅子 雅弘 季昭 本多 義弘 祐輝 染谷 中山 宮澤 高井佐知子 奈良部修弘 松澤 克次 宮松 洋信 長谷部 松永 紀子 髙橋 結花 忍 官史 宮本 里奈 松沼 篤 美幸 髙橋 林 誠一 矢木 髙橋 良平 林 太祐 松村 正史 ШШ 晴紀

薬局実習施設客員教員

◆客員教授

池田 尚敬 石垣 栄一 大木 一正 大塚 吉史 岡村 幸彦 落合 佳宏 河瀬 清文 伸二 河内 菊地 俊英 久田原啓文 久保田良枝 後藤 3/2-西郷 勝行 齋藤 覚 坂口 眞己 笹嶋 勝 篠原久仁子 関口 信行 髙尾浩一郎 髙木 友直 塚原 俊夫 正博 冨岡 橋本はるみ 福岡 勝志 星子 謙 前田 正輝 松井 幸恵 三上 正利 三成 亮 豐 持田 能暢 安田 山田 純一 山本 信夫

 荒井
 玲美

 荒武
 豊文

 池野
 聖子

 井澤
 久博

市川 友子 雅則 大竹 岡部 葉子 加納 公子 川島 誠 晋 北川 久保 聡 熊野真理子 高鹿 寿和 佐々木理恵 茂見 亮太 関口 周吉 橘 隆二 謙三 田宮 富田 晴美 中澤 巧 中野 官節 初鹿 妙子 林 満 松原 明 松本真理子 村田 聡 弓削 吏司 渡邊千津子

◆客員講師

青柳 和子 秋山 倫寛 秋山 由貴 浅井 郁恵 朝賀 一郎 和代 安倍 阿部 芳世 荒井 宏昭 飯田 美保 池方 香里 石川 智洋 石川 祐子 石塚ひろ美

市川 千穂

井出 実 耕崎 둈 隼吾 稲葉 昌弘 小林 井上真喜子 隆 小林 哲 岩田 智美 斎藤 岩野 由香 齋藤 晴美 岩原 真樹 齊藤 保信 植田 茂裕 酒井 裕之 上田 直 坂下 元一 上野眞裕美 佐久間浩徳 鵜澤 洋平 佐々木浩司 潮田 笹本千香子 教明 江口 慶史 佐藤 明子 遠藤 降 佐藤 亮一 章弘 英志 大島 佐野 太田 秀樹 鮫島 光徳 大津 縁 篠原 文里 大槻 美佳 島崎 啓 大平 昭一 白井 正一 幸枝 大山 勝宏 白子 岡田 智利 菅原 幸子 明子 小澤 秀樹 曽木 小田 亜子 高橋 房子 風早 貴之 髙橋裕久子 風間佳里奈 髙松 弘樹 神蔵 典-竹内 良成 尚実 川口 泰男 辰巳 川崎 啓子 田中佳代子 田中 川瀬 祐子 晴美 川田 静香 田邉親一郎 川田 祐介 辻 正浩 彩 川波 育恵 寺尾 川原 堂本 正典 義尚 木田 和枝 常盤 志穂 北岡 与英 都丸 雅子 北谷 豪朗 長久保久仁子 久留 勝 中澤 恵美

野田 恭子 橋本 一成 長谷川哲男 崇憲 林 原 尚史 半沢 陽子 半田てるみ 樋口 勉 土方 香澄 平松 知子 平本 要 広島 英明 深堀久美子 福原 慶子 藤本美智子 文入 重鶴 健一 古濱 星野 朋之 前田 克彦 町田 勝彦 光武 洋 陽子 宮岡 勝一 向井 村岡 周一 千寿 森﨑 守谷 藍子 守屋富美江 矢島真紀子 安田 明子 藪下健太郎 山内 博幸 山崎ひろみ 山下紗綾香 山根 由恵 山本 美沙 吉原 祥吾 渡井 三昭 綿引 浩子

50 音順

山田 英紀

山中映里奈

山谷

横田

吉田

吉元.

若林

同加

信幸

1>-

50 音順

理

進

胡桃澤宏明

黒澤のり子

明奈

久恵

黒田

髙坂

長澤

中村

西野

西山

聡美

友彦

祐司

順次

選択科!

課題研究 Thesis Research

 学年
 第4·5·6学年
 科目分類
 必修
 前期·後期
 通年
 単位
 14

卒論指導教員

学習目標 (GIO)

薬学の知識を総合的に理解し、医療社会に貢献するために、研究課題を通して、新しいことを発見し、科学的根拠に基づいて問題点を解決する能力を修得し、それを生涯にわたって高め続ける態度を養う。これに加え、Aコースでは、将来、研究活動に参画できるようになるために、その基本的理念および態度を修得し、研究課題の達成までの研究プロセスを体験し、研究活動に必要な基本的知識、技能、態度を修得する。さらに研究活動を通して、自ら得た成果を世に問う研究の醍醐味を体感する。Bコースでは、薬学、薬剤師、並びに医薬品が社会のニーズに応え、医療の発展にいかに貢献してきたかを理解するために、医療を取り巻く代表的な事象について調査し、考察する。

┃ 行動目標 (SBOs)

1 1 3 ±35 E	
1	課題を理解し、その達成に向けて積極的に取り組む。(態度)
2	問題点を自ら進んで解決しようと努力する。(態度)
3	課題の達成を目指して論理的思考を行い、生涯にわたって醸成する。(態度)
4	課題達成のために、他者の意見を理解し、討論する能力を醸成する。(態度)
5	研究活動に関わる諸規則を遵守し、倫理に配慮して研究に取り組む。(態度)
6	環境に配慮して、研究に取り組む。(態度)
7	チームの一員としてのルールやマナーを守る。(態度)
8	課題に関連するこれまでの研究成果を調査し、評価できる。(知識・技能)
9	課題に関連するこれまでの発表論文を読解できる。
10	課題達成のために解決すべき問題点を抽出できる。(技能)
11	実験計画を立案できる。(知識・技能)
12	実験系を組み、実験を実施できる。(技能)
13	実験に用いる薬品、器具、機器を正しく取扱い、管理する。(技能・態度)
14	研究活動中に生じたトラブルを指導者に報告する。(態度)
15	研究の各プロセスを正確に記録する。(技能・態度)
16	研究の結果をまとめることができる。(技能)
17	研究の結果を考察し、評価できる。(技能)
18	研究の成果を発表し、適切に質疑応答ができる。(技能・態度)
19	研究の成果を報告書や論文としてまとめることができる。(技能)
20	自らの研究成果に基づいて、次の研究課題を提案する。(知識・技能)
21	研究課題を通して、現象を的確に捉える観察眼を養う。(知識・技能・態度)
22	新規な課題に常にチャレンジする研究者としての創造的精神を醸成する。(態度)
23	科学の発展におけるセレンディピティについて説明できる。(知識・態度)

授業内容

B コースプログラムの概要	(課題研究に加え、下記のプログラムに参加する)詳細は、別冊資料を参照。
4P80 演習(6単位)	5年次(実務実習以外の時期)ならびに6年次(前期)に基礎学力を醸成するために実施する。
医療の最前線(3単位)	5年次に学内学外の講師による講演(オムニバス形式)を聞き、課題レポートを提出する。 この演習によって、医療の最前線に関連する知識に触れ、自ら調査解析する能力を身につ ける。
PBLT 演習(3単位)	5年次に小人数クラスによる演習を行い、薬学生として求められる知識・技能・態度について総合的に学ぶ。また、6年次には発表会を行い、相互に討議する能力を身につける。

五十音順索引

万十音順索引 英会話 Ⅱ (科学英語コミュニケーション)…… 290 英語 (講読) 52 ア 英語 (コミュニケーション) …………… 53 アドバンス英語 ………………244 英語検定 [.......282 アドバンス演習 アドバンス化学演習 ………256 英語検定 Ⅱ ………283 衛生化学·公衆衛生学実習 ······376 アドバンス健康・環境演習 ………257 アドバンス生物演習 ………257 栄養素の化学 ……………………………………………160 アドバンス創薬演習 ………258 オ アドバンス物理演習 ………256 応用統計学 …………………………………………130 応用薬剤学 ………………………………………………166 アドバンス法規演習 …………254 アドバンス薬・疾病演習 …………258 カ 化学系実習 I 基礎有機化学実習 ………352 1 化学系実習 Ⅱ 漢方薬物学実習 ………358 一般用医薬品学 ······188 化学系実習Ⅱ 有機化学実習 ………356 医薬品開発 ……………………313 化学系実習Ⅲ 医薬品合成実習 ………366 医薬品開発特論 I (構造有機化学特論) …… 342 化学系実習Ⅲ 天然医薬品化学実習 ………364 医薬品開発特論 Ⅱ (有機合成化学特論) ……344 化学系実習Ⅳ 化学系実習Ⅳ ……378 医薬品開発と臨床試験(医療薬学演習 I-iii) ······· 214 化学結合論 56 医薬品開発と臨床試験(医療薬学特論-ii) ········209 医薬品化学 [......148 化学物質と生体影響 ………………………………………… 161 医薬品化学 Ⅱ …………………………… 151 学術論文演習 ………………………… 249 医薬品合成実習 ………………………366 医薬品生産特論 ………336 課題研究 ………………………387 科別特論演習 医薬品創製と基礎(生物系・医療薬学系) …… 223 医療衛生薬学演習 I 医薬品創製と基礎(物理・化学系) ……221 医療衛生薬学演習 II-i ラボラトリー演習(1) ······ 250 i セルフメディケーション:薬剤師の関わり…230 ii 臨床応用薬学への課題研究チュートリアル ······ 232 医療衛生薬学演習 II-ii ラボラトリー演習(2) ····· 251 ⅲ 薬剤師の職能と自己将来展望 ………234 医療衛牛薬学演習 II - iii ················· 261 医療衛生薬学演習 Ⅱ 医療衛生薬学小論文 ………229 i ラボラトリー演習 (1) ………250 医療経済学特論 ………………334 ii ラボラトリー演習(2) ··············· 251 医療系実習 [病態生理学·薬物安全性学実習 …… 370 iii261 医療系実習 Ⅱ 薬理学実習 ………………………374 医療衛生薬学特論 医療情報 ……………………143 i 高齢者医療 ······· 227 医療心理 ……………………………………………134 ii 先端香粧品科学 ······ 228 医療薬学演習 II-i ラボラトリー演習(1) ·········· 246 ⅲ 医療衛生薬学小論文 ⋯⋯⋯⋯⋯ 229 医療薬学演習 II-ii ラボラトリー演習(2) ·········· 247 医療薬学演習 II - iii ·············· 259 医療薬学演習 [i 臨床で活躍する薬剤師を目指して(I) …… 211 医療薬物薬学演習 II-i ラボラトリー演習 …… 248 ※ 臨床で活躍する薬剤師を目指して(Ⅱ) …… 213 医療薬物薬学演習 II-ii 学術論文演習 ········· 249 医療薬物薬学演習 Ⅱ - iii ………………… 260 ⅲ 医薬品開発と臨床試験 ⋯⋯⋯⋯ 214 医療薬学演習 Ⅱ 医療倫理 …………………… 88 i ラボラトリー演習(1) ………246 インターンシップ ………………………317 ii ラボラトリー演習(2) …………… 247 I 英会話 I ····················284 英会話 [………285 医療薬学特論 英会話 I (科学英語コミュニケーション) …… 286 i 臨床で活躍する薬剤師を目指して………… 208

英会話 Ⅱ ………………………………………… 288

Ⅱ 医楽品開発と臨床試験209	サ	
iii 中医方剤学 ······210	細胞工学	309
医療薬物薬学演習 [細胞生物学	74
i 医薬品創製と基礎(物理・化学系) 221	シ	
ii 医薬品創製と基礎(生物系・医療薬学系)… 223	事前実務実習 事前実務実習	379
iii 創薬演習 ······· 225	疾病と薬物治療 [139
医療薬物薬学演習 Ⅱ	疾病と薬物治療Ⅱ	141
i ラボラトリー演習·································248	疾病と薬物治療Ⅲ	172
ii 学術論文演習 ························ 249	疾病と薬物治療Ⅳ	174
iii260	疾病と薬物治療V	176
医療薬物薬学特論	疾病と薬物治療VI	180
i 創薬概論 ·······216	疾病と薬物治療Ⅷ	184
ii データ解析集中講座 218	疾病と薬物治療Ⅷ(医療情報演習)	186
iii 中医方剤学 ·······220	疾病と薬物治療Ⅷ	206
科別英語特論	実務実習	384
漢方薬物学 112	実用薬学英語	146
漢方薬物学実習 358	情報リテラシー I	42
+	情報リテラシーⅡ	279
機器スペクトル演習 104	情報リテラシー演習	44
機器分析学 95	食品と健康	163
基礎生物学実習351	植物薬品学	106
基礎物理学集中講義302	ス	
基礎有機化学実習352	数 学	40
機能形態学 I 76	t	
機能形態学Ⅱ 80	生化学 [82
機能形態学Ⅲ	生化学Ⅱ	116
ク	生化学Ⅲ	122
薬の効き方 [136	生化学演習	84
薬の効き方 🏿170	生化学実習	368
薬の効き方Ⅲ178	生活環境と健康	158
薬の効き方IV(薬物治療演習) 204	製剤工学	164
ケ	生物学	78
芸能·文化 ·····268	生物系実習 I 基礎生物学実習	351
健康・環境実習 衛生化学・公衆衛生学実習 376	生物系実習Ⅱ 微生物·免疫学実習	362
健康科学 264	生物系実習Ⅲ 生化学実習	368
健康スポーツ 281	生物系実習IV 生物系実習IV	378
健康と環境 [200	生物薬剤学	128
健康と環境Ⅱ202	生物有機化学	110
健康保持と疾病予防126	生理活性物質概論 一薬の効き方入門一	120
現代経済論	ゼミナール	300
	セルフメディケーション:薬剤師の関わ) ····· 230
後期選択専門科目Ⅱ348	先端香粧品科学	228
香粧品科学	ソ	
構造有機化学	総合演習	
高齢者医療 227	総合衛生演習	240
国際関係論	総合化学演習	237
コミュニケーション論 275	総合生物演習	238

総合創楽演習 239	物埋字
総合物理演習 240	物理系実習 I 分析化学実習 354
総合法規演習 241	物理系実習Ⅱ 物理化学・分析化学実習360
総合薬·疾病演習 ······ 241	物理的平衡論 93
創薬演習225	物理薬剤学132
創薬概論216	フランス語 I296
創薬実習 薬剤学実習	フランス語 🛘298
タ	分子物理化学 60
多変量解析337	文章表現273
F	分析化学 62
地球環境概論266	分析化学実習354
中医方剤学(医療薬学特論 - iii) ················· 210	木
中医方剤学(医療薬物薬学特論 - iii)220	法 学277
中国語 [294	放射化学101
中国語 II295	マ
治験の実際(創薬育薬分野における薬剤師)339	マーケティング I (医薬品マーケティング I) 326
テ	マーケティング Ⅱ(医薬品マーケティング Ⅱ) 328
データ解析集中講座218	マーケティングⅢ(医薬品マーケティング戦略) 330
テーラーメイド医療 182	マーケティングⅣ332
哲 学269	Δ
天然医薬品化学	無機化学 64
天然医薬品化学実習364	×
F	免疫学124
ドイツ語 I292	ヤ
ドイツ語 II293	薬学英語92
東洋医学概論311	薬学と社会190
特許・レギュラトリアルサイエンス 168	薬学入門46
ネ	薬学入門演習 [48
熱力学·反応速度論 ····· 99	薬学入門演習Ⅱ 50
N.	薬剤学実習372
バイオ医薬品とゲノム情報156	薬剤経済学315
バイオスタティスティクス I (緩和医療の最前線) 320	薬剤師の職能と自己将来展望234
バイオスタティスティクス Ⅱ(生物統計学 Ⅱ) 322	薬事関連法規と制度 I192
バイオスタティスティクスⅢ(生物統計学Ⅲ)324	薬事関連法規と制度 Ⅱ196
反応有機化学307	薬理学実習374
ヒ	薬局管理学305
美術・イラストレーション272	薬局方総論
微生物 · 免疫学実習 · · · · · · · · · · · · · · · 362	그
微生物学 I 86	有機化学 I
微生物学Ⅱ118	有機化学Ⅱ 70
病原微生物学 152	有機化学Ⅲ102
病原微生物学特論(感染制御学特論)335	有機化学Ⅳ108
病態生理学・薬物安全性学実習370	有機化学演習 I
病態生理学特論340	有機化学演習 Ⅱ 72
病理組織学	有機化学実習 ······· 356
7	5
物理化学·分析化学実習·······360	ラボラトリー演習(1)(医療衛生薬学演習Ⅱ-i) 250

ラボラトリー演習 (1) (医療薬学演習 I-i) ········· 246
ラボラトリー演習 (2) (医療衛生薬学演習 I-ii) ······ 251
ラボラトリー演習 (2) (医療薬学演習 II-ii) ·········· 247
ラボラトリー演習(医療薬物薬学演習 II-i) ······· 248
ע
臨床医学概論312
臨床応用薬学への課題研究チュートリアル 232
臨床で活躍する薬剤師を目指して208
臨床で活躍する薬剤師を目指して (I)211
臨床で活躍する薬剤師を目指して (Ⅱ)213
臨床分析化学 97
臨床免疫学
臨床薬理学特論

学 年	組	
氏 名		

授業計画

2011年度(平成23年度) 1.2.3.4.5.6年次生用

平成23年4月1日発行

編 集 東京薬科大学薬学部

発 行 東京薬科大学薬学部

〒192-0392 東京都八王子市堀之内1432-1 薬学事務課 TEL 042-676-5892

şince 1880 東京薬科大学薬学部