東京薬科大学大学院 生命科学研究科 生命科学専攻 博士前期(修士)課程

特別入学試験(秋期入学)募集要項

2025年度 東京薬科大学大学院生命科学研究科 博士前期(修士)課程 特別入学試験(秋期入学)募集要項

1 募集人員

大学院生命科学研究科 生命科学専攻 博士前期(修士)課程 若干名

- 2 出願資格 次の(1)~(4)のいずれかに該当する者とする
 - (1) 大学を卒業した者及び2025年9月30日までに卒業見込みの者。
 - (2) 学校教育法第68条の2第3項の規定により学士の学位を授与された者及び2025年9月30日までに 学士の学位を授与される見込みの者。
 - (3) 外国において、学校教育における16年の課程を修了した者及び2025年9月30日までに修了見込みの者。
 - (4) その他本学大学院生命科学研究科において、大学を卒業した者と同等以上の学力があると認めた者。 (事前資格審査を行うので、詳細については6月25日(水)に問い合わせること。)

3 出願期間・場所

- (1) 期間 2025年7月28日(月)~7月29日(火) 9時~17時(ただし、12時~13時は除く)
- (2) 場所 本学生命科学事務課 (持参または郵送)

〈郵送の場合・・・7月29日(火)必着 (レターパック、簡易書留等必ず記録の残る郵送形態にて) >

4 出願書類・検定料

出願書類等	備考
① 入学志願票	本学指定のもの
② 受験票 (脱帽上半身、正面、出願前6ヵ月以内に撮影した写真(縦4 c m×横3cm)を枠内に貼付のこと)	本学指定のもの
③ 成績証明書	本学在学生は不要
④ 卒業見込証明書又は卒業証明書	本学卒業見込者は 不要
⑤ 志望理由書 研究室の志望理由、大学院で進めたい研究テーマ等についてA4の用紙 1枚以内にまとめること。必ず氏名を記入し、「志望理由書」とタイトル をつけること。	形式は任意
⑥ TOEFLスコアの証明書 出願時に必ず提出してください。但し、筆記試験当日に最新のものと 差替えたい場合は差替えが可能です。	原本またはコピー

- ② 入学検定料 35,000円
- *入学検定料の払い込みは、下記の納入期間内に
 - ①銀行窓口・ATM、または
 - ②本学生活協同組合店舗内サービスカウンターで払い込むこと。 生協で支払う際には、出願書類に同封している「本学生活協同組合払込 用紙」を使用すること。
 - ①の場合は「振込明細書」のコピーを、
 - ②の場合は払込金副票を出願書類と共に提出すること。
- *検定料払い込み期間
 - 〈本学生活協同組合店舗内サービスカウンター 受付〉
 - 2025年7月7日 (月) ~7月29日 (火) 14時

【検定料払い込み期間の本学生活協同組合営業日】

受付時間:[通常] 月~金曜日の10時~17時(土・日・祝日手続不可)

〈銀行窓口・ATM 受付(※生協受付期間と異なります

日程に注意してください) >

- 2025年7月14日(月)~7月29日(火)11時締切
- ※上記期間外は、絶対に払い込み手続をしないでください。 大学にて受付処理ができません。

生命科学事務課 での現金受付は 行わない。

〈銀行窓口〉

出願書類に同封している 振込依頼書を使用し、「振込金領収書」のコピーを、出願書類と共に提出すること。

<ATM>

ATMにて振込後、「振込明細票」のコピーを出願書類と共に提出すること。

〈生活協同組合〉

払込金副票を出願書類と共に提出すること。

〈検定料振込先〉

- ・みずほ銀行(0001)、八王子支店(260)学校法人東京薬科大学、ガク)トウキョウヤツカダイガク 普通口座 2845345
- * 郵送で出願する者は、受験票返送先の住所、氏名を明記した縦23.5cm×横12cmの封筒 (410円分の切手を貼付)を同封すること。※レターパックライトでも可
- * 出願資格(2)で出願する者は、学士の学位授与証明書、または学位授与申請予定証明書を提出すること。

5 試験日

2025年8月25日(月)10時00分より筆記試験、2025年8月26日(火)面接試験を本学において実施する。 試験会場等は出願受付時に通知する。

*試験日程

試験日時		試験科目		
8月25日(月) 10:00~12:00 (120 分)		専 門 科 目 (上記の専門科目の選択解答方法を参照のこと。)		
8月26日(火) 10:00~		面 接 試 験 (卒業研究の内容及び将来の研究等について答える。)		

6 選抜方法

入学志願者の選抜は、専門科目の筆記試験・TOEFLスコア・面接試験および出願書類により審査する。

◆専門科目・・・200点満点(3問選択)

〈専門科目の選択解答方法について〉

以下の10間の中から3問選択解答とする。

分子生物学 1 問 (分子生物学I、分子生物学II)

分子細胞生物学 1 問 (分子細胞生物学I、分子細胞生物学II)

生化学 1 問 (生化学I、生化学II)

微生物学・遺伝子工学1問 (微生物学、遺伝子工学)

生物学・生理学 1 問 (生物学、生理学)

統計学・生態学 1問 (生態学、生物統計学)

無機化学 1 問 (化学、生物無機化学)

有機化学 1 問 (有機化学I、有機化学II、生物有機化学)

数学·物理学 1 問 (数学I、物理学)

情報科学 1問 (情報科学I、情報科学II)

- ◆英語(TOEFLスコアを換算)・・・100点満点(本学個別の試験は行わない)
 - 1) 英語の100点分についてTOEFLスコアを換算して充当する。
 - 2) TOEFLのスコア表(証明書)を出願時に必ず提出すること。
 - ・試験日当日に最新のスコア表と差替えたい場合は、筆記試験当日にスコア表を提出すること。
 - 3) 有効なスコアは「TOEFL-ITP」および「TOEFL-iBT」の2種類とする。
 - 4) 入学試験日からさかのぼって2年以内に受験した試験のTOEFLスコアが有効である。
 - 5) スコア表(証明書)は、原本またはコピーのどちらも有効である。

【他大学(外部)学生の皆様へ】

本学大学院を受験する予定で、本学でTOEFL-ITP試験の受験を希望する場合は、本学生命科学事務課まで必ず事前にお問い合わせください。

(今後のTOEFL-ITPの試験日程)

・日程:7月5日(土)予定

・受験料:3,400円~4,000円(※当日支払)

•会場:東京薬科大学

・スコア表につきましては郵送しますので、長3封筒に110円切手を貼付のうえ、試験当日、返信用封筒をご準備ください。

※送付先の住所は、記載のこと。

※その他詳細事項につきましては、個別に連絡致します。

(お問い合わせ先)

· 東京薬科大学 生命科学事務課

TEL: 042-676-8792

7 発表

合否結果については、**2025年9月12日(金)**本学研究3号館2階掲示板に掲示するとともに、本人宛郵送により 通知する。

8 学費等納付金

(1) 納付金は下表の通りである。

	入学金	施設費(入学年次のみ)	授業料	合計	
後期納付金	150,000円	100,000円 (*本学出身者は免除)	460,000円	710,000円 (*610,000円) (*本学出身者)	
前期納付金	期納付金 (*本学出身者は免除)		460,000円	560,000円 (*460,000円) (*本学出身者)	

(2年次以後の学費については、社会情勢の変動により変更することもある。)

(2) 納付期限等

前期納付金は<u>2025年9月12日(金)から9月30日(火)11時まで</u>に本学所定の振込用紙(合格通知書に同封)を使用し、銀行振込にて一括納入すること。

期限までに納入が無かった時は入学資格を失う。

(3) 入学辞退の場合の学費等の返還について

入学手続時納付金を納入後、2025年9月24日(水)<消印有効>までに本学所定の用紙によって 入学辞退を申し出た者には入学金以外の納付金を返還する。

9 受験上および就学上の配慮に関する申請について

疾病または身体的障がい等のため、受験上および就学上の特別な配慮を希望する場合は、生命科学事 務課まで電話連絡の上、下記の期限までに申請書類(含診断書)を提出してください。

なお、必ずしもすべての要望に添えるとは限りません。また期限を過ぎての申請は、やむを得ない事情によるものを除き、原則として受付できませんのでご了承ください。

配慮申請書類提出期限:2025年6月25日(水)17:00まで ※郵送の場合必着

10 注意事項

- (1) 入学は2025年10月1日である。
- (2) 志望(配属)できる研究室は限られているので、事前に問い合わせること。志願者は予め志望研究室を訪問し、研究内容等を調べておくこと。
- (3) 試験の際には、必ず受験票を持参すること。
- (4) 一度受理した提出書類等は返還しない。
- (5) 奨学金制度については、下記まで問い合わせること。 「学生サポートセンター TEL 042-676-8878 (ダイヤルイン)」

11 問い合わせ(願書郵送)先

〒192-0392 東京都八王子市堀之内1432-1 東京薬科大学 生命科学事務課 電話 042-676-8792

生命科学研究科案内

1. 本研究科の特色

I 生命科学研究科について

東京薬科大学大学院生命科学研究科は、平成10年4月に修士課程が、平成12年4月から博士課程が開設されました。この大学院の開設に先立って、平成6年4月に生命科学部が、我が国最初の生命科学部として開設されています。生命科学部及び生命科学研究科は、我が国では数少ない生命科学に関する総合的な、すなわち医薬理農工の領域を横断した学部及び大学院です。生命科学領域で中核となる研究者・技術者の養成を目指しています。

Ⅱ 国際性を重視しています

生命科学研究科は、外国の研究者と肩を並べて国際的にも活躍できる研究者養成を目指します。このため、大学院でも英語の学習を必修科目に位置づけています。また、留学生が受講する場合には、一部の講義を英語で行います。

Ⅲ 生命科学研究科は単一専攻です

生命科学は総合的、横断的な学問です。様々な領域が混じり合うことにより、新しい知識や技術が生まれます。生命科学研究科では、生命科学の学際的な特長を教育課程や研究に生かすために、研究科内を分けずに単一の専攻としています。

Ⅳ 連携大学院方式を取り入れています

生命科学の学際性をより強化するために、学部の教員構成に加えて、外部の国立研究所や民間研究所 からも客員教員を招聘することにより、教授陣の一層の充実を図っています。より幅広い講義、演習 が受けられ、また外部の研究機関においても研究を行うことができます。

Ⅴ 副指導教員制を採用しています

生命科学の学際性を大学院教育に反映させるため、副指導教員制を採用しています。副指導は主指導 教員とは異なる研究室の教員が担当します。このことにより、大学院生は研究領域の異なる複数の教 員から研究指導や助言を受けます。

VI 他大学からの受験を歓迎します

生命科学は基礎の幅が非常に広い学際的な学問です。様々な大学、様々な学部からの受験を歓迎します

3年次の時点において成績が特に優秀であれば、3年次から大学院への飛び入学受験も大学、学部を問わず認めています。

Ⅲ 生命科学は21世紀の科学技術の柱です

生命科学研究科は、生命科学の真理を探究する研究、疾病の原因を理解し治療へとつなげるための基盤的研究、生物学の応用や環境保全研究等を行っています。これらはいずれも、21世紀を迎えた人類の健康と福祉や持続的社会の実現のために、期待されている領域です。この科学技術の主要な柱となる領域での最先端の研究活動を通して、人類と生命を慈しみ、高度な研究能力と学識をもち、国際社会で活躍できる意欲的かつ高い能力のある人材の養成を目指しています。

2. 生命科学研究科 博士(前期)課程における方針

生命科学研究科の基本理念・目標

生命科学研究科は、人類と生命を慈しむ心を持ち、生命科学領域における広範囲な専門知識と応用力を持ち、社会における解決すべき課題に対応し、かつ課題を発見・探求し得る「課題発見・探求能力」を持つ人材の育成を目的とします。具体的には、生命科学の真理を探求する研究、疾病の原因を理解し治療に応用し得る基盤的研究、生物学の応用や環境保全研究等を通じて、生命科学領域で中核となる研究者・技術者・起業家等を養成することを目指します。また、情報を駆使する力、科学の成果を社会に還元する志、および国際社会で活躍する素養をもった人材を育成します。

生命科学研究科の修了認定・学位授与の方針(ディプロマ・ポリシー):修士(生命科学)

研究科博士(前期)課程では、生命科学分野における深い学識と研究能力を持ち、豊かな人間性と倫理性、社会における解決すべき課題に対し、柔軟に対応し解決する能力を持つ大学院学生を育てます。

(学位授与判定基準)研究科の基本理念・目標に沿った指導を定める期間に受け、所定の単位を取得し、 かつ、所定年限内に行われる論文審査及び試験に合格した大学院学生には修了を認定し、学位(修士(生 命科学))を授与します。学位授与の基準は下記のとおりです。

- 1) 科学的内容に関する英語での意思疎通ができること(国際力)。
- 2) 生命科学に関する広い学識を身に付けていること(広い学識)。
- 3) 生命科学講究で豊かな人間性と倫理性を養っていること(人間性、倫理性)。
- 4) 研究を遂行して協働的に解決できること(協働力、課題解決力)。
- 5) 専門的知識を文書および口頭で伝え議論できること (発表力、質疑応答力)。

生命科学研究科博士(前期)課程の教育課程編成・実施の方針(カリキュラム・ポリシー)

生命科学研究科では、最先端の研究活動を通じて、生命科学領域における広範囲な基礎的・先進的知識と技能を修得させ、さまざまな課題に対して柔軟な「課題探求能力」を持つ人材を育成します。文章作成力と自主性を養うために、年度ごとに研究計画書を作成し、プレゼンテーション能力や論理的思考力等を培うために、研究成果発表を推奨します。さらに、博士(前期)課程では国際的にも活躍できる人材の育成を目指し、英語(English for Advanced Studies)を必修科目としています。各科目における学修成果は到達度により評価します。また、各学生に一人以上の副指導教員を配置して、幅広い専門領域の修得を図ります。なお、副指導教員は対象学生の所属する教室(研究室)とは別の研究科委員が担当し、各々評価を行います(副指導教員制度)。

生命科学研究科博士(前期)課程の入学者受入方針(アドミッション・ポリシー)

生命科学研究科博士(前期)課程では最先端の研究活動を通じて、薬学・生命科学領域における広範囲な基礎的・先進的知識と技能を修得し、自ら問題点の抽出と問題解決を進めていくことが実践できる人材を育成するために、学士の称号あるいはそれと同等と見なすことのできる学位を持ち、以下の能力を身につけている人材を求めます。

- 1) 生命科学分野で研究者・技術者・起業家等として社会に貢献したいという強い意志を持っている。
- 2) 豊かな人間性を養うために積極的な自己研鑽に励むことができる。
- 3) 相互理解のための表現力・コミュニケーション能力に優れている。
- 4) 基礎学力があり、高い勉学意欲を持っている。
- 5) 国際的な視点と倫理性と高い教養を持っている。
- 6) 自ら果敢に新たな分野の開拓等に挑戦することができる。

3. 研究室・研究テーマ

P.8からの掲載内容をご確認ください。

* 分子生命科学分野

研究室名・教員氏名	研究テーマと研究内容の理解に参考となる論文等				
\/ → \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\) \(\frac{1}2\) \(\f	神経系(脳や脊髄、感覚神経など)において				
分子神経科学	①どのように神経系がつくられるのか				
#/J55 J. J. J.	②どのように神経変性を改善できるのか、以下の研究を行っている。				
教授 山内 淳司	1) マウス発生工学を用いた神経発生および髄鞘発生の分子メカニズムの解明				
准教授 森本 高子 助教 関 洋一	2) 神経変性疾患を誘導するメカニズムの解明とその創薬標的分子の探索研究				
助教 八子 英司	3) ショウジョウバエ微小脳を用いた神経回路形成および機能とその調節機構				
7,1	oiScience 2023 26 107448 (責任論文)				
	o Sci. Signal. 2022 eabi5276(責任論文)				
	o Sci.Adv. 2018 eaar4471 (責任論文)				
	oNat. Commun. 2016 13478 (責任論文)				
	oSci.Signal. 2013 ra15(責任論文				
	o Sci.Signal. 2012 ra69 (責任論文)				
	Science 2006 314 832-836				
	有機化学を基盤とした新しい物質の創製と方法論の開拓を目指し、以下のような				
生物有機化学	研究を行っている.				
	1) 生理活性天然有機化合物の効率的全合成法の開発				
教授 伊藤 久央	2) 医薬品の基となる新規機能性有機分子の開発				
	3) 効率的有機合成反応と不斉触媒の開発				
	Total Synthesis of Highly Oxygenated Phomopsol B via Acid-Induced Etherification to				
	Construct Bridged Structure				
	Chem. Commun. 2024, 60, 95-97.				
	Total Synthesis of Asperaculin A Org. Lett. 2023, 25, 4510-4513.				
	Total Synthesis of Lucidumone through Convenient One-pot Preparation of the Tetracyclic				
	Skeleton by Claisen Rearrangement and Subsequent Intramolecular Aldol Reaction				
	Angew. Chem. Int. Ed. 2023, 62, e202304132.				
	Total Synthesis of Applanatumol A				
	Chem. Commun. 2023, 59, 8139-8142.				
	コンピュータ・シミュレーションの手法を用いて、以下の研究を行っている。				
生命物理科学	1) 生体膜の形態形成に関するシミュレーション				
	2) 生体に役立つソフトマターのシミュレーション				
脚教 野口 瑶 	3) バクテリアの運動およびそれらが形成するコロニーに関する数理モデルを用い				
(然入学校、势本力)(力)	た研究				
(総合字修・教育センター) 准教授 森河 良太	4) MDシミュレーションによる筋疾患関連や耐熱性タンパク質の動的特性解析 5) 生薬由来化合物のドッキング解析を通じた分子間相互作用の解明				
1世纪汉 林門 及為	6)AI・データ駆動型手法を応用した仮想化合物の生成と構造最適化				
	6) AI・ゲータ駆動型手法を応用した仮想化合物の生成と構造取週化 Mitsuhashi H., Morikawa R., Noguchi Y. and Takasu M. Dissipative Particle Dynamics Simulations for				
	Shape Change of Growing Lipid Bilayer Vesicles. Life (2023) 13, 306.				
	Nariyama, K., Noguchi, Y., Nakajima, M., Yamada, H., Morikawa, R., Takasu, M., and Fujiwara, S.,				
	Coarse-Grained Molecular Dynamics Simulation of Thermostable Starch Branching Enzyme, ACM International Conference Proceeding Series, ICBBB (2023), 112-119				
	International Conference Proceeding Series, (CDDD (2023), 112-11)				

創薬化学 准教授 藤川 雄太 助教 尹 永淑	1) 蛍光プローブ開発を基盤としたケミカルバイオロジー・スクリーニング 2) レドックスバイオロジーへ資するレドックス摂動技術の開発 3) 植物由来生物活性物質,医薬シーズの探索: 培養細胞等を用いた生物活性物質のスクリーニングと作用機構の研究 Tryptophan-Selective Chemical Modification of Peptides by Thioether-Mediated Sulfenylation <i>ChemistryEurope in press</i> ER-mitochondria contacts mediate lipid radical transfer via RMDN3/PTPIP51 phosphorylation to reduce mitochondrial oxidative stress <i>Nat. Commun.</i> 16, 1508. (2025) 17β-neriifolin from unripe fruits of Cerbera manghas suppressed cell proliferation via the inhibition of HOXA9-dependent transcription and the induction of apoptosis in the human AML cell line THP-1 <i>J. Nat. Med.</i> 77, 180-187. (2023) Retusone A, a Guaiane-Type Sesquiterpene Dimer from <i>Wikstroemia retusa</i> and Its Inhibitory Effects on Histone Acetyltransferase HBO1 Expression <i>Molecules</i> 27, 2909. (2022)
生物情報科学 教授 小島 正樹	データサイエンス、バイオインフォマティクス、計算科学の手法を用いて、生体高分子(主に薬や病気に関連するタンパク質)の立体構造に基づく論理的創薬とその基盤技術の開発を行っている。 Structural differences between the closely related RNA helicases, UAP56 and URH49, fashion distinct functional apo-complexes. <i>Nature Communications</i> 15, 455 (2024) Function of SYDE C2-RhoGAP family as signaling hubs for neuronal development deduced by computational analysis. <i>Scientific Reports</i> 12, 4325 (2022) 3CL protease inhibitors with an electrophilic arylketone moiety as anti-SARS-CoV-2 agents. <i>J. Med. Chem.</i> 65, 2926-2939 (2022) Calciprotein particles regulate fibroblast growth factor-23 expression in osteoblasts. <i>Kidney International</i> 97, 702-712 (2020)
言語科学 教授 萩原 明子 准教授 佐々木 友美	科学英語(International Scientific English)の習得に必要な言語情報を分類・分析し第2言語習得理論から得られた知見に基づく研究を行う。また言語・科学技術と社会文化背景との関係性の調査研究を行う。 1)言語心理学的アプローチ(言語習得を実験的手法によって研究する) 2)計量言語学的アプローチ(コーパスをベースにISEを統計的に分析する) 3)語用論的アプローチ(言語使用を社会的コンテキストの中で分析する) 4)社会科学的アプローチ(言語・科学技術と社会のかかわりを研究する) Ellis, R. 1994. Study of Second Language Acquision. Oxford Univ. Press. Long, M. 2006. Problems in SLA. Lewrence Erlbaum Assoc. Robinson, P. Ellis, N. (eds). 2008. Handbook of Cognitive Linguistics and Second Language Acquisition. Routledge.
生命分析化学 教授 梅村 知也 准教授 内田 達也 講師 熊田 英峰 助教 青木 元秀	生命の仕組みを解き明かすための分析法・解析法の開発に取り組み、人々の健康の維持や環境問題の解決に貢献することを目指している。 1)疾病や環境変動に対する超早期診断技術の開発と予防に関する研究 2)三次元ヒト細胞組織体の構築とそれを利用した医薬・香粧品等の機能解析 3)ナノバイオデバイスの創製と1細胞分析(Single cell analysis)技術の開発 Simple Analytical Method to Determine Urinary Isotopic Enrichment of Phenylalanine by GC/EI-MS Coupled with Pentafluorobenzyl Derivatization, <i>Talanta</i> , 287 , 127697 (2025) Novel Chemically Cross-Linked Self-Molding Particulate Sorbents as Solid-Phase Extraction Media, <i>Anal. Sci.</i> , 39 , 749-754 (2023) Preparation of Metal-Immobilized Methacrylate-Based Monolithic Columns for Flow-Through Cross-Coupling Reactions, <i>Molecules</i> , 26 , 7346 (2021)

細胞情報科学

タンパク質翻訳後修飾による生命機能制御機構の解明と、それを標的としたがんなどの疾患治療薬の開発を目指し、以下の研究を行なっている。

1) タンパク質リジンアシル化に関する研究

教授 伊藤 昭博 助教 前本 佑樹

2) 食品成分によるヒストン修飾を介したエピジェネティック制御

3) タンパク質翻訳後修飾を標的としたがん治療薬の開発

GAS41 promotes H2A.Z deposition through recognition of the N terminus of histone H3 by the YEATS domain. *Proc. Natl. Acad. Sci. U S A.* 120, e2304103120 (2023)

Lysine long-chain fatty acylation regulates the TEAD transcription factor. *Cell Rep.* 42, 112388 (2023)

Identification of a derivative of the alkaloid emetine as an inhibitor of the YAP-TEAD interaction and its potential as an anticancer agent. *Biosci. Biotechnol. Biochem.* 87, 501-510 (2023)

Pivotal role 1 for S-nitrosylation of DNA methyltransferase in epigenetic regulation. *Nat. Commun.* 14, 621 (2023)

A specific G9a inhibitor unveils BGLT3 lncRNA as a universal mediator of chemically induced fetal globin gene expression. *Nat. Commun.* 14, 23 (2023)

* 応用生命科学分野

研究室名・教員氏名	研究テーマと研究内容の理解に参考となる論文等
生物工学	生命の精巧なデザインとその設計原理を理解するため、巨大遺伝子を操作できる ヒト人工染色体(Human artificial chromosome: HAC)の設計・構築や、生命初 期進化、宇宙空間での生命存在可能性などを探求する研究を行います。またこう
教授 富塚 一磨 准教授 横堀 伸一 助教 宇野 愛海	した研究の成果にもとづき、新規バイオ医薬品創出や再生・細胞医療発展に貢献する新技術の開発を目指します。 1) <u>ゲノム・染色体工学(宇野・富塚)</u> : 再生医療用HACベクター開発/デザイン細胞医薬開発/ゲノム編集による抗体進化システム/バイオ医薬を望みの組織に送達する新技術の開発/ヒト抗体産生マウスを活用した抗感染症ヒト抗体創成 2) <u>アストロバイオロジー(横堀</u>): 生命初期進化に関する古代生物のタンパク質の復元/分子進化/宇宙における生命。 Efficient human-like antibody repertoire and hybridoma production in trans-chromosomic mice carrying megabase-sized human immunoglobulin loci. <i>Nature Communications</i> 13:1841 (2022) Panel of human cell lines with human/mouse artificial chromosomes. <i>Scientific Reports</i> 12: 3009 (2022) Engineering of human induced pluripotent stem cells via human artificial chromosome vectors for cell therapy and disease modeling. <i>Mol. Ther. Nucleic Acids.</i> 23:629-639 (2021) DNA damage and survival time course of deinococcal cell pellets during 3 years of exposure to outer space. <i>Front. Microbiol.</i> 11: 2050 (2020) Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean. <i>Proc. Natl. Acad. Sci. USA.</i> 114: 4619 (2017)
食品科学	酵素や発酵技術を活用した食品素材の機能改質や新規発酵食品の創出により、食品のおいしさ向上や高付加価値化につながる研究を目指す。また甲殻類をモデル
教授 熊澤 義之 准教授 時下 進一 助教 志賀 靖弘	に形態多様性成立の解析により、原料でもある生物への理解を深める。 1)酵素による食品タンパク質の改質に関する研究 2)自然酵母菌の探索と発酵食品への応用 3)環境シグナルによるミジンコの遺伝子発現調節 4)ミジンコなど甲殻類生物の形の進化を形づくり遺伝子から探る Crosslinking Food Proteins for Improved Functionality. <i>Annual Review of Food Science and Technology</i> , Buchert et al., Vol.1, 113-138 (2010) The Ecoresponsive Genome of <i>Daphnia pulex</i> . <i>Science</i> , 331, 555-561 (2011). Common Transcriptional Mechanisms for Visual Photoreceptor Cell Differentiation among Pancrustaceans. <i>PLoS Genet</i> . Jul; 10(7): e1004484 (2014). Diversification of mitochondrial genome of <i>Daphnia galeata</i> (Cladocera, Crustacea): comparison with phylogenetic consideration of the complete sequences of clones isolated from five lakes in Japan. <i>Gene</i> , 611, 38-46 (2017).
環境生物学 教授 新開 泰弘 准教授 梅村 真理子 講師 中野 春男 助教 小串 祥子	環境化学物質の曝露などの環境ストレスに対する細胞や動物個体の応答・防御システムの解明に取り組む。 1) 超硫黄分子を介した生体の毒性防御の分子機構の解明 2) 環境ストレスに対する細胞外システインの防御的役割とその制御システム 3) ストレス応答因子が関与する神経活動の調節機構解明 4) ストレス応答因子が細胞分化や器官形成へ及ぼす影響とその機構解明 Sulfane Sulfur in Toxicology: A Novel Defense System Against Electrophilic Stress. Toxicol. Sci., 170, 3-9 (2019) Capture of Electrophilic Quinones in the Extracellular Space: Evidence for a Phase Zero Reaction. Chem. Res. Toxicol., 36, 23-31 (2023) ATF5 deficiency causes abnormal cortical development. Sci. Rep., 11, 7295 (2021) Functional validation of epitope-tagged ATF5 knock-in mice generated by improved genome editing of oviductal nucleic acid delivery (i-GONAD). Cell Tissue Res., 385, 239-249 (2021)

環境応用植物学

准教授 佐藤 典裕 助教 岡田 克彦

水界の光合成生物であるシアノバクテリアや微細藻類において、遺伝子および生理機能を解析し、そこで得られた情報を基に、光合成利用の有用物質生産を目指している。特に、バイオ燃料生産の原料となる貯蔵脂質や作物のリン肥料として有望なポリリン酸の蓄積機構について研究している。

- 1) 栄養素欠乏等の環境ストレスへの順応応答とそれを支える遺伝子発現調節
- 2) 膜脂質および貯蔵脂質の代謝制御機構とその生理学的意義
- 3) CO₂固定化システムの構築

Regulatory carbon metabolism underlying seawater-based promotion of triacylglycero l accumulation in *Chlorella kessleri*. *Bioresour*. *Technol*. 289:121686. (2019).

Diacylglyceryl-N,N,N-trimethylhomoserine-dependent lipid remodeling in a green alg a, *Chlorella kessleri*. *Commun. Biol.* 5: 19. (2022).

Cellular response of *Parachlorella kessleri* to a solid surface culture environment. Front. Plant Sci. 14: 1175080. (2023).

slr2103, a homolog of type-2 diacylglycerol acyltransferase genes, for plastoquinone -related neutral lipid synthesis and NaCl-stress acclimatization in a cyanobacteriu m, *Synechocystis* sp. PCC 6803. Front. Plant Sci. 14:1181180 (2023).

Polyphosphate-kinase-1 dependent polyphosphate hyperaccumulation for acclimation to nutrient loss in the cyanobacterium, *Synechocystis* sp. PCC 6803. Front. Plant Sci. 15:1441626 (2024).

生命エネルギー工学

教授 渡邉 一哉 嘱託助教 富田 啓介 未知の微生物やそれらがもつ未知のエネルギー代謝機構を探索します。また、発見された新奇微生物をサステイナブルバイオテクノロジー(人類の持続可能な発展を可能にするバイオテクノロジー)に応用し、SDGsの実現に貢献する研究を行っています。

- 1) メタゲノム解析を用いた未知微生物・未知遺伝子の探索
- 2) 新奇微生物の単離と分類学的解析
- 3) 実用化研究が進む微生物燃料電池に関する企業との共同研究
- 4) 微生物に電気を与えて増殖させる微生物電気合成法の開発
- 5) 電気化学活性菌がもつ未知の代謝機構や発現制御機構の解明
- 6) 日本科学未来館の「サステイナブルバイオテクノロジープロジェクト」

Hirose et al., Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways. Nature Commun. 9:1083 (2018)

Hirose et al. Towards development of electrogenetics using electrochemically active bacteria. Biotechnol. Adv. 37:107351 (2019)

Inaba et al. Metatranscriptomic evidences for magnetite nanoparticle-accelerated acetoclastic methanogenesis under continuous agitation. Appl. Environ. Microbiol. 85:e01733-19 (2019)

Matsumoto et al. Identification of a diguanylate cyclase that facilitates biofilm formation on electrodes by Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 87:e00201-21(2021)

応用生態学

教授 野口 航 助教 溝上 祐介 陸上植物の成長や生存に関係する光合成系や呼吸系、気孔調節が環境変化にどのように応答し、どのような生態学的な意義があるかを解明するために、モデル植物のシロイヌナズナやフラベリア、薬用植物、野外の植物種を使って研究している。

- 1) 葉のCO2吸収とH2O損失のバランスを制御する仕組みの解明
- 2) 光合成系と呼吸系との相互作用の解析
- 3) 野外の林床草本種の葉の光合成系の制御機構の解明

Wada et al. (2023) Dynamic seasonal changes in photosynthesis systems in leaves of *Asarum tamaense*, an evergreen understorey herbaceous species. *Ann Bot*, 131: 323-436.

Mizokami et al. (2022) Cost-benefit analysis of mesophyll conductance - Diversities of anatomical, biochemical and environmental determinants. *Ann Bot*, 130: 265-283.

Inoue et al. (2022) Growth temperature affects O₂ consumption rates and plasticity of respiratory flux to support shoot growth at various growth temperatures. *Plant Cell Env*, 45: 133-146.

Yamada et al. (2020) The mitochondrial respiratory chain maintains the photosynthetic electron flow in *Arabidopsis thaliana* leaves under high-light stress. *Plant Cell Physiol*. 61: 283-295.

12

* 生命医科学分野

* 生命医科学分野	
研究室名・教員氏名	研究テーマと研究内容の理解に参考となる論文等
感染制御学 教授 新崎 恒平 准教授 井上 弘樹 助教 若菜 裕一	重篤な肺炎を引き起こすレジオネラや未曾有のパンデミックを引き起こした新型コロナウイルス (SARS-CoV-2; SCV-2) などの病原体は、宿主細胞の様々な生理機能を巧みに利用している。そこで、これら病原体の感染や増殖の機序を細胞生物学的側面から理解し、その機序の破綻を基盤とした治療法の確立を目指している。更に、小胞体とゴルジ体との接触場のインフルエンザ構造タンパク質ヘマグルチニン (HA) の輸送における役割の解明も行っている。また、がん細胞の浸潤における小胞輸送や細胞骨格の役割を解明する研究も進めている。1) レジオネラによる宿主生理機能ハイジャック機構の解明2) SCV-2構造タンパク質の細胞内輸送機構の解明を通じた新規治療薬の探索3) 小胞体―ゴルジ体接触場のHA輸送における役割の解明4) MT1-MMPによるがん細胞の浸潤機構の解明
	Subversion of the host endocytic pathway by Legionella pneumophila-mediated ubiquitination of Rab5. J Cell Biol. 224(4):e202406159 (2025) Legionella uses host Rab GTPases and BAP31 to create a unique ER niche. Cell Rep. 43(12):115053 (2024) Requirement of phosphatidic acid binding for distribution of the bacterial protein Lpg1137 targeting syntaxin 17. J. Cell Sci. 135, jcs259538 (2022) Legionella hijacks the host Golgi-to-ER retrograde pathway for the association of Legionella-containing vacuole with the ER. PLoS Pathog. 17, e1009437 (2021) Legionella remodels the plasma membrane-derived vacuole by utilizing exocyst components as tethers. J Cell Biol. 217, 3863 (2018) Legionella effector Lpg1137 shuts down ER-mitochondria communication through cleavage of syntaxin 17. Nat Commun. 15, e15406 (2017) The ER cholesterol sensor SCAP promotes CARTS biogenesis at ER-Golgi membrane contact sites. J. Cell Biol. 220, e202002150 (2021) CARTS biogenesis requires VAP-lipid transfer protein complexes functioning at the endoplasmic reticulum-Golgi interface. Mol Biol Cell. 26, 4686 (2015) A MAP1B-cortactin-Tks5 axis regulates TNBC invasion and tumorigenesis. J Cell Biol. 223, e202303102 (2024) MT1-MMP recruits the ER-Golgi SNARE Bet1 for efficient MT1-MMP transport to the plasma membrane. J. Cell Biol. 218, 3355 (2019)
再生医科学	ヒトiPS細胞を使い、異種間キメラ動物やオルガノイドなどの最新技術を駆使し、ヒトの発生原理を理解することで、ヒト臓器創出技術の開発および疾患治療への応用を目指している。
教授 山口 智之 講師 福田 敏史 講師 長島 駿 助教 及川 真実	1) iPS細胞からの臓器創出と医療応用に関する研究 2) 精神疾患の分子基盤に関する研究 3)ミトコンドリア生物学に関する研究 4) 個体発生と生殖細胞に関する研究 Interspecies organogenesis generates autologous functional islets. Nature. 542,191–196 (2017) Role of immature choroid plexus in the pathology of model mice and human iPSC-derived organoids with autism spectrum disorder Cell Rep. 44(1), 115113 (2025) Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division. Science 367(6484) 1366-1371 (2020) Functional primordial germ cell-like cells from pluripotent stem cells in rats. Science 376(6589):176-179 (2022).

ゲノム情報医科学

教授 細道 一善 准教授 土方 敦司 講師 佐藤 礼子 講師 米田 敦子 NGSなどの最新のゲノム解析機器を駆使し、ゲノム配列や網羅的転写産物などデータ解析を通じて疾患の発症メカニズムの解明や臨床応用を目指している。

- 1) オミクス解析と機械学習によるヒト疾患の理解と予防医学への応用
- 2)機械学習によるヒト遺伝子疾患メカニズム予測と治療薬探索
- 3) 癌の薬剤耐性、アトピー性皮膚炎の分子機構解明と新たな分子標的薬の開発
- 4) 癌細胞の接着・遊走・共食いにおける新規分子機構の解明

Genetic and phenotypic landscape of the major histocompatibility complex region in the Japanese population. *Nat Genet.* 51, 470-480 (2019)

Decoding the diversity of killer immunoglobulin-like receptors by deep sequencing and a high-resolution imputation method. *Cell Genom.* 2, 100101 (2022)

Decoding disease-causing mechanisms of missense mutations from supramolecular structures. *Sci Rep.* 7, 8541 (2017)

ZIC5 drives melanoma aggressiveness by PDGFD-mediated activation of FAK and STAT3. *Cancer Res.* 77, 366-377 (2017)

Cell surface CD63 increased by up-regulated polylactosamine modification sensitizes human melanoma cells to the BRAF inhibitor PLX4032. *FASEB J.* 33,3851-3869 (2019).

腫瘍医科学

 教授
 原田
 浩徳

 准教授
 小林
 大貴

 助教
 結城
 加奈子

骨髄異形成症候群 (MDS) などの血液がんの発症機序をミトコンドリアダイナミックス異常から解明を目指している。また、がん悪液質の病態解明と創薬開発を目指している。

- 1) RUNXI 遺伝子変異および協調遺伝子変異マウスによる MDS 発症機序の解明
- 2) がん悪液質の病態解明
- 3) 慢性骨髄単球性白血病 (CMML) 発症機序の解明

IL36G-producing neutrophil-like monocytes promote cachexia in cancer. **Nat Commun**. 15(1):7662, 2024.

Mitochondrial dynamics as a pathobiological mediator of clonal myeloid disorders. **Cancer Sci.** 114(7):2722-2728, 2023.

Myeloid neoplasms and clonal hematopoiesis from the RUNX1 perspective. **Leukemia**.36(5):1203-1214, 2022.

Mitochondrial Fragmentation Triggers Ineffective Hematopoiesis in Myelodysplastic Syndromes. **Cancer Discov**. 12(1):250-269, 2022

NUP98-HBO1-fusion generates phenotypically and genetically relevant chronic myelomonocytic leukemia pathogenesis. **Blood Adv.** 9;3(7):1047-1060, 2019.

幹細胞制御学

教授 平位 秀世 助教 横田 明日美 すべての血液細胞の源となる造血幹細胞が、臨機応変に必要に応じた細胞供給を、生涯にわたって維持することで生命を支えている仕組みと、その破綻によって生じる疾病の病態解明をめざす。また、研究室で新規に同定したCD135⁺単球の造血制御機構や生理学的意義の解明にも取り組んでいる。

- 1) 造血幹細胞による生体恒常性維持機構の解明
- 2) 造血幹細胞の制御異常による疾患の病態解明と治療法・予防法への展開
- 3) 新規単球の分化制御機構と生理学的意義の解明
- Hematopoietic stem cells undergo a lymphoid to myeloid switch in early stages of emergency granulopoiesis. *EMBO J* 42(23): e113527, 2023
- A Novel CD135⁺ subset of mouse monocytes with a distinct differentiation path way and antigen-presenting properties. *J Immunol* 209(3): 498, 2022
- C/EBPβ isoforms sequentially regulate regenerating mouse hematopoietic stem/pro genitor cells. *Blood Adv* 4(14):3343, 2020
- C/EBPβ is a critical mediator of IFNα-induced exhaustion of chronic myeloid leu kemia stem cells. *Blood Adv* 3(3):476, 2019
- C/EBPβ is required for survival of Ly6C monocytes. *Blood* 130(16):1809, 2017.
- C/EBPβ promotes BCR-ABL-mediated myeloid expansion and leukemic stem cell exhaustion. *Leukemia*. 27(3): 619, 2013.
- C/EBPβ is involved in the amplification of early granulocyte precursors during c andidemia-induced 'emergency' granulopoiesis. *J Immunol*. 189(9): 4546, 2012.
- C/EBPB is required for 'emergency' granulopoiesis. *Nat Immunol*. 7(7): 732, 2006

免疫制御学

教授 田中 正人 准教授 四元 聡志 助教 池田 直輝 自然免疫細胞による免疫制御機構の解明を目指して研究を進めいている。

- 1. 死細胞貪食による免疫制御機構
- 2. 組織傷害におけるマクロファージの形質転換機構
- 3. 好中球細胞外トラップの形成機構
- 1. The early neutrophil-committed progenitors aberrantly differentiate into immunoregulat ory monocytes during emergency myelopoiesis. *Cell Rep* 42, 112165 (2023).
- 2. Immunoregulatory monocyte subset promotes metastasis associated with therapeutic intervention for primary tumor *Front Immunol* 12, 663115 (2021).
- 3. Emergence of immunoregulatory Ym1⁺Ly6C^{hi} monocytes during recovery phase of tissue injury *Science Immunol* 3, eaat0207 (2018).
- 4. Macrophages switch their phenotype by regulating Maf expression during different phases of inflammation *J Immunol* 201, 635-51 (2018).
- 5. Hyperoxidation of ether-linked phospholipids accelerates neutrophil extracellular trap formation *Sci Rep* 7,16026 (2017).

細胞防御医科学

教授丸山剛助教陳好

上皮細胞などの非免疫細胞による異常細胞に対する認識・攻撃機構の解明を目指す。また、この解明した機構を基にして治療法やバイオテクノロジーの開発に繋げる。さらに、がん未病状態予測法の開発に挑む。

- 1) 上皮細胞による MHC-I 認識をトリガーとした排除様式の解明
- 2) 排除能を促進するペプチドの疾患治療・予防への応用
- 3) 脳波を用いたがん未病状態の予測法開発
- Epithelial recognition and elimination against aberrant cells. *Semin Immunopathol* 2024
- Epithelial cells remove precancerous cells by cell competition via MHC class I-LILRB3 interaction. *Nature Immunol* 2021
- ZAK Inhibitor PLX4720 Promotes Extrusion of Transformed Cells via Cell Competition. iScience 2020
- Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolic changes. *Nature Cell Biol* 2017
- Rab5-regulated endocytosis plays a crucial role in apical extrusion of transformed cells. *PNAS* 2017
- Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. *Nature Biotechnol* 2016

生命科学実習センター 教授 玉腰 雅忠 助教 橋本 吉民

新規の創薬標的の発見や抗がん剤の薬理作用の解明を目的として、DNA複製を阻害する種々の環境要因(複製ストレス)に対する応答機構について解析している。また高度好熱菌やそのウイルスを用いて耐熱性タンパク質の創出を目指す。

- 1) 複製ストレス下における複製フォーク安定化機構の解明
- 2) 真核生物レプリソームの形成と解体を制御する分子機構の解明
- 3) 高度好熱菌のゲノム改変技術の開発
- 4) 好熱菌ファージの単離と機能・構造解析

Novel role of DONSON in CMG helicase assembly during vertebrate DNA replication initiation, *EMBO J.* **42**, e114131 (2023)

Mre11 exonuclease activity promotes irreversible mitotic progression under replication stress, *Life Sci Alliance* **5**:e202101249 (2022)

Ongoing replication forks delay the nuclear envelope breakdown upon mitotic entry, *J Biol Chem* **296**:100033 (2021)

Isolation and genomic analysis of a type IV pili-independent *Thermus thermophilus* phage, φMN1 from a Japanese hot spring, *J. Gen. Appl. Microbiol.*, **69**, 117–124. (2023)

* 薬学部兼担研究室

研究室名・教員氏名	研究テーマと研究内容の理解に参考となる論文等
薬品製造学 兼担教授 松本 隆司 兼担准教授 矢内 光	新しい有機反応の開発と、それを活用する生物活性天然物および有用新機能化合物の合成を行っている。医薬品をはじめ、文明社会を支えるさまざまな有機化合物を合成・創製するための新たな基盤の創出を目的としている。 1) 新骨格転位反応の開発 2) 生体触媒をもちいる不斉合成反応の開発 3) 抗がん抗生物質、植物アルカロイド、天然キサントン類の全合成 4) 超強酸性炭素酸触媒の開発と機能探索 5) 有機フッ素化合物の新合成法の開発と含フッ素生物活性物質の合成 6) 有用な光学特性をもつ新化合物の設計・合成 1. Ring Rearrangement Reactions of 4-Alkenylisocoumarins and Photophysical Evaluation of Multi-Substituted Anthracene Products, Chem. Eur. J., 30, e202401965 (2024); 2. Diverse Synthesis of 2H-Isoindole-Based Polycyclic Aromatic Compounds, Chem. Eur. J., 29, e202301703 (2023); 3. Total Synthesis of Patulone, a Natural Xant honoid Possessing Geminally Diisoprenylated Structure, Synlett, 34, 953 (2023); 4. Synthesis of Spirocyclic Cyclobutenes through Desulfinative Spirocyclization of gem-Bis(triflyl)cyclobutenes, Chem. Eur. J., 28, e202200704 (2022); 5. A Fluorinated C arbanionic Substituent for Improving Ware-solubility ad Lipophilicity of Fluorescent Dyes, Angew. Chem. Int. Ed., 60, 5168 (2021).
免疫学 兼担教授 安達 禎之	免疫調節剤の開発:アレルギー、膠原病、感染症など免疫調節不全と密接な関係にある疾患は増加の一途をたどっているが、標準的治療法が確立されたものは少ない。これらに対処するための新しい治療薬(法)の開発を目指す。 1) 感染免疫の効果的強化方法(免疫アジュバント)の開発 2) アレルギーの根本治療戦略の開発 3) 自己免疫疾患の治療戦略の開発 4) 深在性真菌症診断薬の開発 1. Dectin-1 is required for host defense against <i>Pneumocystis carinii</i> but not against <i>Candida albicans. Nat Immunol</i> 8:39-46 (2007); 2. Dectin-2 recognition of a mannans and induction of Th17 cell differentiation is essential for host defense against <i>Candida albicans. Immunity</i> 32: 681–691 (2010); 3. Latent 1,3-6-D-glucan acts as an adjuvant for a llergen-specific IgE production induced by Japanese cedar pollen exposure. <i>Allergol Int</i> 70:105-113 (2021); 4. Split Enzyme-Based Biosensors for Structural Characterization of Soluble and Insoluble β-Glucans. <i>Int J Molecular Sci</i> 22:1576 (2021); 5. Blocking Dect in-1 prevents colorectal tumorigenesis by suppressing prostaglandin E2 production in myeloid-derived suppressor cells and enhancing IL-22 binding protein expression. <i>Nat Commun</i> 14, 1493 (2023), https://doi.org/10.1038/s41467-023-37229-x

東京薬科大学 大学院生命科学研究科 生命科学専攻 指導教授印 博士前期(修士)課程 特別入学試験(秋期入学) 志願票 * フリガナ 受験番号 氏 名 男 生年 都,道 性 年 别 月 日 本籍地 月日 府, 県 女 都,道 現住所 府, 県 集合時間通知· 合否通知の 発送先になります 自宅(下宿)・ () 自宅一 携帯電話番号 (携帯ー 学校・中等教育学校 卒業 年 月 年 月 大学 部 学科 入学 学 歴 年 月 年 月 年 月 職 歴 年 月 志望研究室名 氏 名 職業 続 柄 Ŧ 学資支援者 住 所 電話番号

2025年度 大学院生命科学研究科 博士前期(修士)課程 特別入学試験(秋期入学)受験票 試験日当日持参

受験	※(大学記入)
番号	
氏	
名	

願書受付印

試験日・場所

筆記試験-2025年8月25日(月) 面接試験-2025年8月26日(火)

東京薬科大学

集合時間・場所は後日通知します

2025年度 大学院生命科学研究科博士前期(修士)課程 特別入学試験(秋期入学)受験票

受験	※(大学記入)
番号	
氏	
名	

写 真 貼 付 欄 縱 4×横 3cm

試験日•場所

筆記試験-2025年8月25日(月) 面接試験-2025年8月26日(火)

東京薬科大学

A票

2025年度 大学院生命科学研究科博士前期(修士)課程 特別入学試験(秋期入学)

> 払込金副票 (願書と共に提出)

※受験番号(大学が記載します)	

フリ	カ゛ナ			
迅	名			

フリガナ・氏名を記入してください

<期間外取扱不可>

東京薬科大学生活協同組合払込用紙

B 票

受験料を振り

込んでから

本人切り

2025年度 大学院生命科学研究科博士前期(修士)課程 特別入学試験(秋期入学)

> 払込金受領書 (本人保存)

払込期間	2025年7月7日(月) ~ 7月29日(火)
金額	¥35,000
払込先	東京薬科大学生活協同組合
事項	入学試験検定料
フリガナ	
氏名	

フリガナ・氏名を記入してください

<期間外取扱不可>

C票

切り離

2025年度 大学院生命科学研究科博士前期(修士)課程 特別入学試験(秋期入学)

> 払込金受領書 (生活協同組合保存)

払込期間	2025年7月7日(月) ~ 7月29日(火)
金額	¥35,000
払込先	東京薬科大学生活協同組合
事項	入学試験検定料
フリガナ	
氏名	

フリガナ・氏名を記入してください

<期間外取扱不可>

振込全領収書

恢 还 金 唄 収 青			
依頼日	年 月 日		
金額	¥35, 000		
依頼人			
受取人	学)東京薬科大学 東京都八王子市 堀之内1432-1		

銀行で切り離してください

上記の金額を正に領収しました。

本人が切り離してください

込 頼

電信扱 日 振込指定 依頼日 年 手数料 ¥35,000 金 額 先方銀 みずほ銀行 八王子支店 現 金 行 普通 口座番号 当手 枚 2845345 訳 他手 枚 トウキョウヤツカタ 加"力 取扱銀行へお願い 受取人 学校法人東京薬科大学 氏名(フリガナ)は必ず打電してください。 氏名 (フリガナ) 取扱銀行 頼 氏名 (漢字) TEL: ・窓口でみずほ銀行本支店から上記口座へ振込む場合のみ手数料が無料です。 ・10万円を超える現金振り込みの際は、本人確認書類をご提示ください。 ・窓口での14時以降のお振込みは翌営業日扱いとなりますので、ご了承ください。 収納印 (取扱店保管)